Loading…
The chaperonin TRiC is blocked by native and glycated prion protein
Eukaryotic double-ring chaperonin TRiC is an ATP-dependent protein-folding machine. Most of its substrates are known to form large ordered structures from multiple polypeptide chains. Since these structures are similar to fibrillar and oligomeric forms of amyloidogenic proteins, we hypothesized that...
Saved in:
Published in: | Archives of biochemistry and biophysics 2020-04, Vol.683, p.108319-108319, Article 108319 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Eukaryotic double-ring chaperonin TRiC is an ATP-dependent protein-folding machine. Most of its substrates are known to form large ordered structures from multiple polypeptide chains. Since these structures are similar to fibrillar and oligomeric forms of amyloidogenic proteins, we hypothesized that TRiC may play a role in the development of neurodegenerative diseases of amyloid nature including prion diseases. Enzyme-linked immunosorbent assay showed that monomeric, oligomeric and fibrillar forms of prion protein (PrP) bind strongly to chaperonin TRiC, whereas glycation reduces the prion protein affinity for chaperonin. Nevertheless, dynamic light scattering, electron microscopy and thioflavin T fluorescence confirmed that all studied forms of PrP undergo an amyloid transformation after interaction with chaperonin, but different forms of prion protein are capable of having different effects on the functional state of TRiC. For example, prion protein monomers completely block its ability to reactivate the chaperonin's natural substrate - sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). At the same time, PrP oligomers and fibrils only partially prevent the reactivation of GAPDS upon the action of TRiC. The monomeric forms of prion protein glycated by methylglyoxal do not inhibit, but only slow down the chaperone-dependent reactivation of GAPDS. Thus, the interaction of amyloidogenic proteins with chaperonins could cause cell malfunction.
•All studied forms of prion protein (PrP) bind strongly to chaperonin TRiC.•All forms of PrP undergo an amyloid transformation using TRiC.•Glycation of prion protein reduces its affinity for chaperonin TRiC.•Only PrP monomers completely block TRiC chaperone activity.•TRiC may play a role in the development of neurodegenerative diseases. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/j.abb.2020.108319 |