Loading…
Hyperspectral imaging from a raw mosaic image with end-to-end learning
Hyperspectral imaging provides rich spatial-spectral-temporal information with wide applications. However, most of the existing hyperspectral imaging systems require light splitting/filtering devices for spectral modulation, making the system complex and expensive, and sacrifice spatial or temporal...
Saved in:
Published in: | Optics express 2020-01, Vol.28 (1), p.314-324 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c320t-d78eb0f661f6c6b1b6f8cef508ba8a0ea28649c152cee600ff1117cb2af4b4773 |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-d78eb0f661f6c6b1b6f8cef508ba8a0ea28649c152cee600ff1117cb2af4b4773 |
container_end_page | 324 |
container_issue | 1 |
container_start_page | 314 |
container_title | Optics express |
container_volume | 28 |
creator | Fu, Hao Bian, Liheng Cao, Xianbin Zhang, Jun |
description | Hyperspectral imaging provides rich spatial-spectral-temporal information with wide applications. However, most of the existing hyperspectral imaging systems require light splitting/filtering devices for spectral modulation, making the system complex and expensive, and sacrifice spatial or temporal resolution. In this paper, we report an end-to-end deep learning method to reconstruct hyperspectral images directly from a raw mosaic image. It saves the separate demosaicing process required by other methods, which reconstructs the full-resolution RGB data from the raw mosaic image. This reduces computational complexity and accumulative error. Three different networks were designed based on the state-of-the-art models in literature, including the residual network, the multiscale network and the parallel-multiscale network. They were trained and tested on public hyperspectral image datasets. Benefiting from the parallel propagation and information fusion of different-resolution feature maps, the parallel-multiscale network performs best among the three networks, with the average peak signal-to-noise ratio achieving 46.83dB. The reported method can be directly integrated to boost an RGB camera for hyperspectral imaging. |
doi_str_mv | 10.1364/OE.372746 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2369894038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369894038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d78eb0f661f6c6b1b6f8cef508ba8a0ea28649c152cee600ff1117cb2af4b4773</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMotlYP_gHJUQ9b89Uke5SytUKhFz2HJJ3Ulf0y2VL6711tFU_vwDzzwjwI3VIypVyKx3Ux5YopIc_QmJJcZIJodf5vHqGrlD4IoULl6hKNOKNU55KM0WJ56CCmDnwfbYXL2m7LZotDbGtscbR7XLfJlv5nA3hf9u8Ymk3Wt9kQuAIbm-HgGl0EWyW4OeUEvS2K1_kyW62fX-ZPq8xzRvpsozQ4EqSkQXrpqJNBewgzop3VloBlWorc0xnzAJKQECilyjtmg3BCKT5B98feLrafO0i9qcvkoapsA-0uGcZlrnNBuB7QhyPqY5tShGC6ODwRD4YS863NrAtz1Dawd6fanath80f-euJf2ANnTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369894038</pqid></control><display><type>article</type><title>Hyperspectral imaging from a raw mosaic image with end-to-end learning</title><source>EZB Electronic Journals Library</source><creator>Fu, Hao ; Bian, Liheng ; Cao, Xianbin ; Zhang, Jun</creator><creatorcontrib>Fu, Hao ; Bian, Liheng ; Cao, Xianbin ; Zhang, Jun</creatorcontrib><description>Hyperspectral imaging provides rich spatial-spectral-temporal information with wide applications. However, most of the existing hyperspectral imaging systems require light splitting/filtering devices for spectral modulation, making the system complex and expensive, and sacrifice spatial or temporal resolution. In this paper, we report an end-to-end deep learning method to reconstruct hyperspectral images directly from a raw mosaic image. It saves the separate demosaicing process required by other methods, which reconstructs the full-resolution RGB data from the raw mosaic image. This reduces computational complexity and accumulative error. Three different networks were designed based on the state-of-the-art models in literature, including the residual network, the multiscale network and the parallel-multiscale network. They were trained and tested on public hyperspectral image datasets. Benefiting from the parallel propagation and information fusion of different-resolution feature maps, the parallel-multiscale network performs best among the three networks, with the average peak signal-to-noise ratio achieving 46.83dB. The reported method can be directly integrated to boost an RGB camera for hyperspectral imaging.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.372746</identifier><identifier>PMID: 32118960</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2020-01, Vol.28 (1), p.314-324</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-d78eb0f661f6c6b1b6f8cef508ba8a0ea28649c152cee600ff1117cb2af4b4773</citedby><cites>FETCH-LOGICAL-c320t-d78eb0f661f6c6b1b6f8cef508ba8a0ea28649c152cee600ff1117cb2af4b4773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32118960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Bian, Liheng</creatorcontrib><creatorcontrib>Cao, Xianbin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Hyperspectral imaging from a raw mosaic image with end-to-end learning</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Hyperspectral imaging provides rich spatial-spectral-temporal information with wide applications. However, most of the existing hyperspectral imaging systems require light splitting/filtering devices for spectral modulation, making the system complex and expensive, and sacrifice spatial or temporal resolution. In this paper, we report an end-to-end deep learning method to reconstruct hyperspectral images directly from a raw mosaic image. It saves the separate demosaicing process required by other methods, which reconstructs the full-resolution RGB data from the raw mosaic image. This reduces computational complexity and accumulative error. Three different networks were designed based on the state-of-the-art models in literature, including the residual network, the multiscale network and the parallel-multiscale network. They were trained and tested on public hyperspectral image datasets. Benefiting from the parallel propagation and information fusion of different-resolution feature maps, the parallel-multiscale network performs best among the three networks, with the average peak signal-to-noise ratio achieving 46.83dB. The reported method can be directly integrated to boost an RGB camera for hyperspectral imaging.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMotlYP_gHJUQ9b89Uke5SytUKhFz2HJJ3Ulf0y2VL6711tFU_vwDzzwjwI3VIypVyKx3Ux5YopIc_QmJJcZIJodf5vHqGrlD4IoULl6hKNOKNU55KM0WJ56CCmDnwfbYXL2m7LZotDbGtscbR7XLfJlv5nA3hf9u8Ymk3Wt9kQuAIbm-HgGl0EWyW4OeUEvS2K1_kyW62fX-ZPq8xzRvpsozQ4EqSkQXrpqJNBewgzop3VloBlWorc0xnzAJKQECilyjtmg3BCKT5B98feLrafO0i9qcvkoapsA-0uGcZlrnNBuB7QhyPqY5tShGC6ODwRD4YS863NrAtz1Dawd6fanath80f-euJf2ANnTw</recordid><startdate>20200106</startdate><enddate>20200106</enddate><creator>Fu, Hao</creator><creator>Bian, Liheng</creator><creator>Cao, Xianbin</creator><creator>Zhang, Jun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200106</creationdate><title>Hyperspectral imaging from a raw mosaic image with end-to-end learning</title><author>Fu, Hao ; Bian, Liheng ; Cao, Xianbin ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d78eb0f661f6c6b1b6f8cef508ba8a0ea28649c152cee600ff1117cb2af4b4773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Bian, Liheng</creatorcontrib><creatorcontrib>Cao, Xianbin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Hao</au><au>Bian, Liheng</au><au>Cao, Xianbin</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral imaging from a raw mosaic image with end-to-end learning</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-01-06</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>314</spage><epage>324</epage><pages>314-324</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Hyperspectral imaging provides rich spatial-spectral-temporal information with wide applications. However, most of the existing hyperspectral imaging systems require light splitting/filtering devices for spectral modulation, making the system complex and expensive, and sacrifice spatial or temporal resolution. In this paper, we report an end-to-end deep learning method to reconstruct hyperspectral images directly from a raw mosaic image. It saves the separate demosaicing process required by other methods, which reconstructs the full-resolution RGB data from the raw mosaic image. This reduces computational complexity and accumulative error. Three different networks were designed based on the state-of-the-art models in literature, including the residual network, the multiscale network and the parallel-multiscale network. They were trained and tested on public hyperspectral image datasets. Benefiting from the parallel propagation and information fusion of different-resolution feature maps, the parallel-multiscale network performs best among the three networks, with the average peak signal-to-noise ratio achieving 46.83dB. The reported method can be directly integrated to boost an RGB camera for hyperspectral imaging.</abstract><cop>United States</cop><pmid>32118960</pmid><doi>10.1364/OE.372746</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2020-01, Vol.28 (1), p.314-324 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2369894038 |
source | EZB Electronic Journals Library |
title | Hyperspectral imaging from a raw mosaic image with end-to-end learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20imaging%20from%20a%20raw%20mosaic%20image%20with%20end-to-end%20learning&rft.jtitle=Optics%20express&rft.au=Fu,%20Hao&rft.date=2020-01-06&rft.volume=28&rft.issue=1&rft.spage=314&rft.epage=324&rft.pages=314-324&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.372746&rft_dat=%3Cproquest_cross%3E2369894038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-d78eb0f661f6c6b1b6f8cef508ba8a0ea28649c152cee600ff1117cb2af4b4773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2369894038&rft_id=info:pmid/32118960&rfr_iscdi=true |