Loading…
Machine learning holography for 3D particle field imaging
We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate mea...
Saved in:
Published in: | Optics express 2020-02, Vol.28 (3), p.2987-2999 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-3a9db5d03d7c41b2db91a3cb1fecec52c4029b35a0997a12115914b1e2a5a283 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-3a9db5d03d7c41b2db91a3cb1fecec52c4029b35a0997a12115914b1e2a5a283 |
container_end_page | 2999 |
container_issue | 3 |
container_start_page | 2987 |
container_title | Optics express |
container_volume | 28 |
creator | Shao, Siyao Mallery, Kevin Kumar, S Santosh Hong, Jiarong |
description | We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate measurement of individual particles is crucial. Assessments on both synthetic and experimental holograms demonstrate a significant improvement in particle extraction rate, localization accuracy and speed compared to prior methods over a wide range of particle concentrations, including highly dense concentrations where other methods are unsuitable. Our approach can be potentially extended to other types of computational imaging tasks with similar features. |
doi_str_mv | 10.1364/OE.379480 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2370532850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370532850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3a9db5d03d7c41b2db91a3cb1fecec52c4029b35a0997a12115914b1e2a5a283</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRS0EoqUw8AeQRxhS_KzjEZXwkIq6dLds50sb5CbBTof-e4JSENO9w9HV1UHolpI55QvxuC7mXGmRkzM0pUSLTJBcnf_rE3SV0ichVCitLtGEM8qoVnKK9If1u7oBHMDGpm62eNeGdhtttzviqo2YP-POxr72AXBVQyhxvbfbAbxGF5UNCW5OOUObl2KzfMtW69f35dMq84It-oxbXTpZEl4qL6hjpdPUcu9oBR68ZF4Qph2Xlmit7HCLSk2Fo8CstCznM3Q_znax_TpA6s2-Th5CsA20h2QYV0RylksyoA8j6mObUoTKdHE4G4-GEvMjyqwLM4oa2LvT7MHtofwjf83wb_RnYXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370532850</pqid></control><display><type>article</type><title>Machine learning holography for 3D particle field imaging</title><source>EZB Electronic Journals Library</source><creator>Shao, Siyao ; Mallery, Kevin ; Kumar, S Santosh ; Hong, Jiarong</creator><creatorcontrib>Shao, Siyao ; Mallery, Kevin ; Kumar, S Santosh ; Hong, Jiarong</creatorcontrib><description>We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate measurement of individual particles is crucial. Assessments on both synthetic and experimental holograms demonstrate a significant improvement in particle extraction rate, localization accuracy and speed compared to prior methods over a wide range of particle concentrations, including highly dense concentrations where other methods are unsuitable. Our approach can be potentially extended to other types of computational imaging tasks with similar features.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.379480</identifier><identifier>PMID: 32121975</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2020-02, Vol.28 (3), p.2987-2999</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3a9db5d03d7c41b2db91a3cb1fecec52c4029b35a0997a12115914b1e2a5a283</citedby><cites>FETCH-LOGICAL-c426t-3a9db5d03d7c41b2db91a3cb1fecec52c4029b35a0997a12115914b1e2a5a283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32121975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Siyao</creatorcontrib><creatorcontrib>Mallery, Kevin</creatorcontrib><creatorcontrib>Kumar, S Santosh</creatorcontrib><creatorcontrib>Hong, Jiarong</creatorcontrib><title>Machine learning holography for 3D particle field imaging</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate measurement of individual particles is crucial. Assessments on both synthetic and experimental holograms demonstrate a significant improvement in particle extraction rate, localization accuracy and speed compared to prior methods over a wide range of particle concentrations, including highly dense concentrations where other methods are unsuitable. Our approach can be potentially extended to other types of computational imaging tasks with similar features.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAYRS0EoqUw8AeQRxhS_KzjEZXwkIq6dLds50sb5CbBTof-e4JSENO9w9HV1UHolpI55QvxuC7mXGmRkzM0pUSLTJBcnf_rE3SV0ichVCitLtGEM8qoVnKK9If1u7oBHMDGpm62eNeGdhtttzviqo2YP-POxr72AXBVQyhxvbfbAbxGF5UNCW5OOUObl2KzfMtW69f35dMq84It-oxbXTpZEl4qL6hjpdPUcu9oBR68ZF4Qph2Xlmit7HCLSk2Fo8CstCznM3Q_znax_TpA6s2-Th5CsA20h2QYV0RylksyoA8j6mObUoTKdHE4G4-GEvMjyqwLM4oa2LvT7MHtofwjf83wb_RnYXA</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Shao, Siyao</creator><creator>Mallery, Kevin</creator><creator>Kumar, S Santosh</creator><creator>Hong, Jiarong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200203</creationdate><title>Machine learning holography for 3D particle field imaging</title><author>Shao, Siyao ; Mallery, Kevin ; Kumar, S Santosh ; Hong, Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3a9db5d03d7c41b2db91a3cb1fecec52c4029b35a0997a12115914b1e2a5a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Siyao</creatorcontrib><creatorcontrib>Mallery, Kevin</creatorcontrib><creatorcontrib>Kumar, S Santosh</creatorcontrib><creatorcontrib>Hong, Jiarong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Siyao</au><au>Mallery, Kevin</au><au>Kumar, S Santosh</au><au>Hong, Jiarong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning holography for 3D particle field imaging</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-02-03</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>2987</spage><epage>2999</epage><pages>2987-2999</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate measurement of individual particles is crucial. Assessments on both synthetic and experimental holograms demonstrate a significant improvement in particle extraction rate, localization accuracy and speed compared to prior methods over a wide range of particle concentrations, including highly dense concentrations where other methods are unsuitable. Our approach can be potentially extended to other types of computational imaging tasks with similar features.</abstract><cop>United States</cop><pmid>32121975</pmid><doi>10.1364/OE.379480</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2020-02, Vol.28 (3), p.2987-2999 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2370532850 |
source | EZB Electronic Journals Library |
title | Machine learning holography for 3D particle field imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20holography%20for%203D%20particle%20field%20imaging&rft.jtitle=Optics%20express&rft.au=Shao,%20Siyao&rft.date=2020-02-03&rft.volume=28&rft.issue=3&rft.spage=2987&rft.epage=2999&rft.pages=2987-2999&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.379480&rft_dat=%3Cproquest_cross%3E2370532850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-3a9db5d03d7c41b2db91a3cb1fecec52c4029b35a0997a12115914b1e2a5a283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2370532850&rft_id=info:pmid/32121975&rfr_iscdi=true |