Loading…
Experimental probe of a complete 3D photonic band gap
The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we pr...
Saved in:
Published in: | Optics express 2020-02, Vol.28 (3), p.2683-2698 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3 |
container_end_page | 2698 |
container_issue | 3 |
container_start_page | 2683 |
container_title | Optics express |
container_volume | 28 |
creator | Adhikary, Manashee Uppu, Ravitej Harteveld, Cornelis A M Grishina, Diana A Vos, Willem L |
description | The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we propose a purely experimental probe of the 3D photonic band gap that pertains to any class of photonic crystals. We collect reflectivity spectra with a large aperture on exemplary 3D inverse woodpile structures that consist of two perpendicular nanopore arrays etched in silicon. We observe intense reflectivity peaks (R>90%) typical of high-quality crystals with broad stopbands. A resulting parametric plot of s-polarized versus p-polarized stopband width is linear ("y=x"), a characteristic of a 3D photonic band gap, as confirmed by simulations. By scanning the focus across the crystal, we track the polarization-resolved stopbands versus the volume fraction of high-index material and obtain many more parametric data to confirm that the high-NA stopband corresponds to the photonic band gap. This practical probe is model-free and provides fast feedback on the advanced nanofabrication needed for 3D photonic crystals and stimulates practical applications of band gaps in 3D silicon nanophotonics and photonic integrated circuits, photovoltaics, cavity QED, and quantum information processing. |
doi_str_mv | 10.1364/oe.28.002683 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2370534000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370534000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EoqWwMSOPDKQ8P8eOM6K2fEiVusBs2Y4NRUkc4lSCf09QC2J6dzi6uu8QcslgzrjMb6Ofo5oDoFT8iEwZlHmWgyqO_-UJOUvpHYDlRVmckglHhqwUbErE6rPz_bbx7WBq2vXRehoDNdTFpqv94Clf0u4tDrHdOmpNW9FX052Tk2Dq5C8Od0Ze7lfPi8dsvXl4WtytM8dLMWRSSVa5MmDJIFgOMqAUnEHhbTXuRcRCYq5Uhc4yVMKIwiMyxoUM1paOz8j1vncc9rHzadDNNjlf16b1cZc08gIEzwFgRG_2qOtjSr0PuhvfMv2XZqB_ROnNSqPSe1EjfnVo3tnGV3_wrxn-DX8hYBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370534000</pqid></control><display><type>article</type><title>Experimental probe of a complete 3D photonic band gap</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Adhikary, Manashee ; Uppu, Ravitej ; Harteveld, Cornelis A M ; Grishina, Diana A ; Vos, Willem L</creator><creatorcontrib>Adhikary, Manashee ; Uppu, Ravitej ; Harteveld, Cornelis A M ; Grishina, Diana A ; Vos, Willem L</creatorcontrib><description>The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we propose a purely experimental probe of the 3D photonic band gap that pertains to any class of photonic crystals. We collect reflectivity spectra with a large aperture on exemplary 3D inverse woodpile structures that consist of two perpendicular nanopore arrays etched in silicon. We observe intense reflectivity peaks (R>90%) typical of high-quality crystals with broad stopbands. A resulting parametric plot of s-polarized versus p-polarized stopband width is linear ("y=x"), a characteristic of a 3D photonic band gap, as confirmed by simulations. By scanning the focus across the crystal, we track the polarization-resolved stopbands versus the volume fraction of high-index material and obtain many more parametric data to confirm that the high-NA stopband corresponds to the photonic band gap. This practical probe is model-free and provides fast feedback on the advanced nanofabrication needed for 3D photonic crystals and stimulates practical applications of band gaps in 3D silicon nanophotonics and photonic integrated circuits, photovoltaics, cavity QED, and quantum information processing.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.28.002683</identifier><identifier>PMID: 32121951</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2020-02, Vol.28 (3), p.2683-2698</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3</citedby><cites>FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3</cites><orcidid>0000-0002-8052-9427 ; 0000-0002-9712-4434 ; 0000-0003-3066-859X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32121951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adhikary, Manashee</creatorcontrib><creatorcontrib>Uppu, Ravitej</creatorcontrib><creatorcontrib>Harteveld, Cornelis A M</creatorcontrib><creatorcontrib>Grishina, Diana A</creatorcontrib><creatorcontrib>Vos, Willem L</creatorcontrib><title>Experimental probe of a complete 3D photonic band gap</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we propose a purely experimental probe of the 3D photonic band gap that pertains to any class of photonic crystals. We collect reflectivity spectra with a large aperture on exemplary 3D inverse woodpile structures that consist of two perpendicular nanopore arrays etched in silicon. We observe intense reflectivity peaks (R>90%) typical of high-quality crystals with broad stopbands. A resulting parametric plot of s-polarized versus p-polarized stopband width is linear ("y=x"), a characteristic of a 3D photonic band gap, as confirmed by simulations. By scanning the focus across the crystal, we track the polarization-resolved stopbands versus the volume fraction of high-index material and obtain many more parametric data to confirm that the high-NA stopband corresponds to the photonic band gap. This practical probe is model-free and provides fast feedback on the advanced nanofabrication needed for 3D photonic crystals and stimulates practical applications of band gaps in 3D silicon nanophotonics and photonic integrated circuits, photovoltaics, cavity QED, and quantum information processing.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EoqWwMSOPDKQ8P8eOM6K2fEiVusBs2Y4NRUkc4lSCf09QC2J6dzi6uu8QcslgzrjMb6Ofo5oDoFT8iEwZlHmWgyqO_-UJOUvpHYDlRVmckglHhqwUbErE6rPz_bbx7WBq2vXRehoDNdTFpqv94Clf0u4tDrHdOmpNW9FX052Tk2Dq5C8Od0Ze7lfPi8dsvXl4WtytM8dLMWRSSVa5MmDJIFgOMqAUnEHhbTXuRcRCYq5Uhc4yVMKIwiMyxoUM1paOz8j1vncc9rHzadDNNjlf16b1cZc08gIEzwFgRG_2qOtjSr0PuhvfMv2XZqB_ROnNSqPSe1EjfnVo3tnGV3_wrxn-DX8hYBU</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Adhikary, Manashee</creator><creator>Uppu, Ravitej</creator><creator>Harteveld, Cornelis A M</creator><creator>Grishina, Diana A</creator><creator>Vos, Willem L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8052-9427</orcidid><orcidid>https://orcid.org/0000-0002-9712-4434</orcidid><orcidid>https://orcid.org/0000-0003-3066-859X</orcidid></search><sort><creationdate>20200203</creationdate><title>Experimental probe of a complete 3D photonic band gap</title><author>Adhikary, Manashee ; Uppu, Ravitej ; Harteveld, Cornelis A M ; Grishina, Diana A ; Vos, Willem L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikary, Manashee</creatorcontrib><creatorcontrib>Uppu, Ravitej</creatorcontrib><creatorcontrib>Harteveld, Cornelis A M</creatorcontrib><creatorcontrib>Grishina, Diana A</creatorcontrib><creatorcontrib>Vos, Willem L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikary, Manashee</au><au>Uppu, Ravitej</au><au>Harteveld, Cornelis A M</au><au>Grishina, Diana A</au><au>Vos, Willem L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental probe of a complete 3D photonic band gap</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-02-03</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>2683</spage><epage>2698</epage><pages>2683-2698</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we propose a purely experimental probe of the 3D photonic band gap that pertains to any class of photonic crystals. We collect reflectivity spectra with a large aperture on exemplary 3D inverse woodpile structures that consist of two perpendicular nanopore arrays etched in silicon. We observe intense reflectivity peaks (R>90%) typical of high-quality crystals with broad stopbands. A resulting parametric plot of s-polarized versus p-polarized stopband width is linear ("y=x"), a characteristic of a 3D photonic band gap, as confirmed by simulations. By scanning the focus across the crystal, we track the polarization-resolved stopbands versus the volume fraction of high-index material and obtain many more parametric data to confirm that the high-NA stopband corresponds to the photonic band gap. This practical probe is model-free and provides fast feedback on the advanced nanofabrication needed for 3D photonic crystals and stimulates practical applications of band gaps in 3D silicon nanophotonics and photonic integrated circuits, photovoltaics, cavity QED, and quantum information processing.</abstract><cop>United States</cop><pmid>32121951</pmid><doi>10.1364/oe.28.002683</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8052-9427</orcidid><orcidid>https://orcid.org/0000-0002-9712-4434</orcidid><orcidid>https://orcid.org/0000-0003-3066-859X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2020-02, Vol.28 (3), p.2683-2698 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2370534000 |
source | Free E-Journal (出版社公開部分のみ) |
title | Experimental probe of a complete 3D photonic band gap |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20probe%20of%20a%20complete%203D%20photonic%20band%20gap&rft.jtitle=Optics%20express&rft.au=Adhikary,%20Manashee&rft.date=2020-02-03&rft.volume=28&rft.issue=3&rft.spage=2683&rft.epage=2698&rft.pages=2683-2698&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.28.002683&rft_dat=%3Cproquest_cross%3E2370534000%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2370534000&rft_id=info:pmid/32121951&rfr_iscdi=true |