Loading…

Experimental probe of a complete 3D photonic band gap

The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we pr...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2020-02, Vol.28 (3), p.2683-2698
Main Authors: Adhikary, Manashee, Uppu, Ravitej, Harteveld, Cornelis A M, Grishina, Diana A, Vos, Willem L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3
cites cdi_FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3
container_end_page 2698
container_issue 3
container_start_page 2683
container_title Optics express
container_volume 28
creator Adhikary, Manashee
Uppu, Ravitej
Harteveld, Cornelis A M
Grishina, Diana A
Vos, Willem L
description The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we propose a purely experimental probe of the 3D photonic band gap that pertains to any class of photonic crystals. We collect reflectivity spectra with a large aperture on exemplary 3D inverse woodpile structures that consist of two perpendicular nanopore arrays etched in silicon. We observe intense reflectivity peaks (R>90%) typical of high-quality crystals with broad stopbands. A resulting parametric plot of s-polarized versus p-polarized stopband width is linear ("y=x"), a characteristic of a 3D photonic band gap, as confirmed by simulations. By scanning the focus across the crystal, we track the polarization-resolved stopbands versus the volume fraction of high-index material and obtain many more parametric data to confirm that the high-NA stopband corresponds to the photonic band gap. This practical probe is model-free and provides fast feedback on the advanced nanofabrication needed for 3D photonic crystals and stimulates practical applications of band gaps in 3D silicon nanophotonics and photonic integrated circuits, photovoltaics, cavity QED, and quantum information processing.
doi_str_mv 10.1364/oe.28.002683
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2370534000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370534000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EoqWwMSOPDKQ8P8eOM6K2fEiVusBs2Y4NRUkc4lSCf09QC2J6dzi6uu8QcslgzrjMb6Ofo5oDoFT8iEwZlHmWgyqO_-UJOUvpHYDlRVmckglHhqwUbErE6rPz_bbx7WBq2vXRehoDNdTFpqv94Clf0u4tDrHdOmpNW9FX052Tk2Dq5C8Od0Ze7lfPi8dsvXl4WtytM8dLMWRSSVa5MmDJIFgOMqAUnEHhbTXuRcRCYq5Uhc4yVMKIwiMyxoUM1paOz8j1vncc9rHzadDNNjlf16b1cZc08gIEzwFgRG_2qOtjSr0PuhvfMv2XZqB_ROnNSqPSe1EjfnVo3tnGV3_wrxn-DX8hYBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370534000</pqid></control><display><type>article</type><title>Experimental probe of a complete 3D photonic band gap</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Adhikary, Manashee ; Uppu, Ravitej ; Harteveld, Cornelis A M ; Grishina, Diana A ; Vos, Willem L</creator><creatorcontrib>Adhikary, Manashee ; Uppu, Ravitej ; Harteveld, Cornelis A M ; Grishina, Diana A ; Vos, Willem L</creatorcontrib><description>The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we propose a purely experimental probe of the 3D photonic band gap that pertains to any class of photonic crystals. We collect reflectivity spectra with a large aperture on exemplary 3D inverse woodpile structures that consist of two perpendicular nanopore arrays etched in silicon. We observe intense reflectivity peaks (R&gt;90%) typical of high-quality crystals with broad stopbands. A resulting parametric plot of s-polarized versus p-polarized stopband width is linear ("y=x"), a characteristic of a 3D photonic band gap, as confirmed by simulations. By scanning the focus across the crystal, we track the polarization-resolved stopbands versus the volume fraction of high-index material and obtain many more parametric data to confirm that the high-NA stopband corresponds to the photonic band gap. This practical probe is model-free and provides fast feedback on the advanced nanofabrication needed for 3D photonic crystals and stimulates practical applications of band gaps in 3D silicon nanophotonics and photonic integrated circuits, photovoltaics, cavity QED, and quantum information processing.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.28.002683</identifier><identifier>PMID: 32121951</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2020-02, Vol.28 (3), p.2683-2698</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3</citedby><cites>FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3</cites><orcidid>0000-0002-8052-9427 ; 0000-0002-9712-4434 ; 0000-0003-3066-859X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32121951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adhikary, Manashee</creatorcontrib><creatorcontrib>Uppu, Ravitej</creatorcontrib><creatorcontrib>Harteveld, Cornelis A M</creatorcontrib><creatorcontrib>Grishina, Diana A</creatorcontrib><creatorcontrib>Vos, Willem L</creatorcontrib><title>Experimental probe of a complete 3D photonic band gap</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we propose a purely experimental probe of the 3D photonic band gap that pertains to any class of photonic crystals. We collect reflectivity spectra with a large aperture on exemplary 3D inverse woodpile structures that consist of two perpendicular nanopore arrays etched in silicon. We observe intense reflectivity peaks (R&gt;90%) typical of high-quality crystals with broad stopbands. A resulting parametric plot of s-polarized versus p-polarized stopband width is linear ("y=x"), a characteristic of a 3D photonic band gap, as confirmed by simulations. By scanning the focus across the crystal, we track the polarization-resolved stopbands versus the volume fraction of high-index material and obtain many more parametric data to confirm that the high-NA stopband corresponds to the photonic band gap. This practical probe is model-free and provides fast feedback on the advanced nanofabrication needed for 3D photonic crystals and stimulates practical applications of band gaps in 3D silicon nanophotonics and photonic integrated circuits, photovoltaics, cavity QED, and quantum information processing.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EoqWwMSOPDKQ8P8eOM6K2fEiVusBs2Y4NRUkc4lSCf09QC2J6dzi6uu8QcslgzrjMb6Ofo5oDoFT8iEwZlHmWgyqO_-UJOUvpHYDlRVmckglHhqwUbErE6rPz_bbx7WBq2vXRehoDNdTFpqv94Clf0u4tDrHdOmpNW9FX052Tk2Dq5C8Od0Ze7lfPi8dsvXl4WtytM8dLMWRSSVa5MmDJIFgOMqAUnEHhbTXuRcRCYq5Uhc4yVMKIwiMyxoUM1paOz8j1vncc9rHzadDNNjlf16b1cZc08gIEzwFgRG_2qOtjSr0PuhvfMv2XZqB_ROnNSqPSe1EjfnVo3tnGV3_wrxn-DX8hYBU</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Adhikary, Manashee</creator><creator>Uppu, Ravitej</creator><creator>Harteveld, Cornelis A M</creator><creator>Grishina, Diana A</creator><creator>Vos, Willem L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8052-9427</orcidid><orcidid>https://orcid.org/0000-0002-9712-4434</orcidid><orcidid>https://orcid.org/0000-0003-3066-859X</orcidid></search><sort><creationdate>20200203</creationdate><title>Experimental probe of a complete 3D photonic band gap</title><author>Adhikary, Manashee ; Uppu, Ravitej ; Harteveld, Cornelis A M ; Grishina, Diana A ; Vos, Willem L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikary, Manashee</creatorcontrib><creatorcontrib>Uppu, Ravitej</creatorcontrib><creatorcontrib>Harteveld, Cornelis A M</creatorcontrib><creatorcontrib>Grishina, Diana A</creatorcontrib><creatorcontrib>Vos, Willem L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikary, Manashee</au><au>Uppu, Ravitej</au><au>Harteveld, Cornelis A M</au><au>Grishina, Diana A</au><au>Vos, Willem L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental probe of a complete 3D photonic band gap</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-02-03</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>2683</spage><epage>2698</epage><pages>2683-2698</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>The identification of a complete three-dimensional (3D) photonic band gap in real crystals typically employs theoretical or numerical models that invoke idealized crystal structures. Such an approach is prone to false positives (gap wrongly assigned) or false negatives (gap missed). Therefore, we propose a purely experimental probe of the 3D photonic band gap that pertains to any class of photonic crystals. We collect reflectivity spectra with a large aperture on exemplary 3D inverse woodpile structures that consist of two perpendicular nanopore arrays etched in silicon. We observe intense reflectivity peaks (R&gt;90%) typical of high-quality crystals with broad stopbands. A resulting parametric plot of s-polarized versus p-polarized stopband width is linear ("y=x"), a characteristic of a 3D photonic band gap, as confirmed by simulations. By scanning the focus across the crystal, we track the polarization-resolved stopbands versus the volume fraction of high-index material and obtain many more parametric data to confirm that the high-NA stopband corresponds to the photonic band gap. This practical probe is model-free and provides fast feedback on the advanced nanofabrication needed for 3D photonic crystals and stimulates practical applications of band gaps in 3D silicon nanophotonics and photonic integrated circuits, photovoltaics, cavity QED, and quantum information processing.</abstract><cop>United States</cop><pmid>32121951</pmid><doi>10.1364/oe.28.002683</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8052-9427</orcidid><orcidid>https://orcid.org/0000-0002-9712-4434</orcidid><orcidid>https://orcid.org/0000-0003-3066-859X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2020-02, Vol.28 (3), p.2683-2698
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2370534000
source Free E-Journal (出版社公開部分のみ)
title Experimental probe of a complete 3D photonic band gap
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20probe%20of%20a%20complete%203D%20photonic%20band%20gap&rft.jtitle=Optics%20express&rft.au=Adhikary,%20Manashee&rft.date=2020-02-03&rft.volume=28&rft.issue=3&rft.spage=2683&rft.epage=2698&rft.pages=2683-2698&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.28.002683&rft_dat=%3Cproquest_cross%3E2370534000%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-6861dc9f2910fb306f2653107ebd026222762488d2cb1285a57e2211356fbb9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2370534000&rft_id=info:pmid/32121951&rfr_iscdi=true