Loading…

TGF-β3/Smad3 Contributes to Isoflurane Postconditioning Against Cerebral Ischemia–Reperfusion Injury by Upregulating MEF2C

Isoflurane postconditioning alleviates cerebral ischemic–reperfusion injury (CIRI), but the underlying mechanism has not been fully clarified. We previously demonstrated that the transforming growth factor beta-1 (TGF-β1)/Smads signaling pathway is involved in the neuroprotective effect of isofluran...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular neurobiology 2020-11, Vol.40 (8), p.1353-1365
Main Authors: Yang, Yuqi, Chen, Long, Si, Junqiang, Ma, Ketao, Yin, Jiangwen, Li, Yan, Yang, Chengwei, Wang, Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Isoflurane postconditioning alleviates cerebral ischemic–reperfusion injury (CIRI), but the underlying mechanism has not been fully clarified. We previously demonstrated that the transforming growth factor beta-1 (TGF-β1)/Smads signaling pathway is involved in the neuroprotective effect of isoflurane postconditioning. TGF-β3 has a highly homologous sequence relative to that of TGF-β1. In this study, we explored the roles of the TGF-β3/Smad3 signaling pathway and myocyte enhancer factor 2C (MEF2C) in neuroprotection induced by isoflurane postconditioning. A CIRI rat model was established by middle cerebral artery occlusion for 1.5 h, followed by 24 h of reperfusion. Isoflurane postconditioning led to lower infarct volumes and neurologic deficit scores, more surviving neurons, and less damaged and apoptotic neurons as compared with those of CIRI rats. Moreover, isoflurane postconditioning upregulated the expressions of TGF-β3, p-Smad3, and MEF2C. However, the neuroprotective effect was reversed by pirfenidone, a TGF-β3/Smad3 signaling pathway inhibitor. Also, pirfenidone treatment downregulated the expression of MEF2C. These results indicate that the TGF-β3/Smad3 signaling pathway contributes to the neuroprotection of isoflurane postconditioning after CIRI and is possibly related to MEF2C.
ISSN:0272-4340
1573-6830
DOI:10.1007/s10571-020-00822-5