Loading…

Experimental verification the electron return effect around spherical air cavities for the MR‐Linac using Monte Carlo calculation

Purpose Dose deposition around unplanned air cavities during magnetic resonance‐guided radiotherapy (MRgRT) is influenced by the electron return effect (ERE). This is clinically relevant for gas forming close to or inside organs at risk (OARs) that lie in the path of a single beam, for example, inte...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2020-06, Vol.47 (6), p.2506-2515
Main Authors: Shortall, J., Vasquez Osorio, E., Aitkenhead, A., Berresford, J., Agnew, J., Budgell, G., Chuter, R., McWilliam, A., Kirkby, K., Mackay, R., Herk, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Dose deposition around unplanned air cavities during magnetic resonance‐guided radiotherapy (MRgRT) is influenced by the electron return effect (ERE). This is clinically relevant for gas forming close to or inside organs at risk (OARs) that lie in the path of a single beam, for example, intestinal track during pelvic treatment. This work aims to verify Monte Carlo calculations that predict the dosimetric effects of ERE around air cavities. For this, we use GafChromic EBT3 film inside poly‐methyl methacrylate (PMMA) –air phantoms. Method Four PMMA phantoms were produced. Three of the phantoms contained centrally located spherical air cavities (0.5, 3.5, 7.5 cm diameter), and one phantom contained no air. The phantoms were split to sandwich GafChromic EBT3 film in the center. The phantoms were irradiated on an Elekta Unity system using a single 10 × 10 cm2 7‐MV photon beam under the influence of a 1.5‐T transverse magnetic field. The measurements were replicated using the Elekta Monaco treatment planning system (TPS). Gamma analysis with pass criteria 3%/3 mm was used to compare the measured and calculated dose distributions. We also consider 3%/2 mm, 2%/3 mm, and 2%/2 mm pass criteria for interest. Results The gamma analysis showed that >95% of the points agreed between the TPS‐calculated and measured dose distributions, using 3%/3 mm criteria. The phantom containing the largest air cavity had the lowest agreement, with most of the disagreeing points lying inside the air cavity (dose to air region). Conclusions The dose effects due to ERE around spherical air cavities are being calculated in the TPS with sufficient accuracy for clinical use.
ISSN:0094-2405
2473-4209
DOI:10.1002/mp.14123