Loading…

A computational analysis of the effect of supporting organs on predicted vesical pressure in stress urinary incontinence

Stress urinary incontinence (SUI) or urine leakage from urethra occurs due to an increase in abdominal pressure resulting from stress like a cough or jumping height. SUI is more frequent among post-menopausal women. In the absence of bladder contraction, vesical pressure exceeds urethral pressure le...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing 2020-05, Vol.58 (5), p.1079-1089
Main Authors: Barzegari, Mojtaba, Vahidi, Bahman, Safarinejad, Mohammad Reza, Ebad, Mahtab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stress urinary incontinence (SUI) or urine leakage from urethra occurs due to an increase in abdominal pressure resulting from stress like a cough or jumping height. SUI is more frequent among post-menopausal women. In the absence of bladder contraction, vesical pressure exceeds urethral pressure leading to urine leakage. The main aim of this study is to utilize fluid-structure interaction techniques to model bladder and urethra computationally under an external pressure like sneezing. Both models have been developed with linear elastic properties for the bladder wall while the patient model has also been simulated utilizing the Mooney-Rivlin solid model. The results show a good agreement between the clinical data and the predicted values of the computational models, specifically the pressure at the center of the bladder. There is 1.3% difference between the predicted vesical pressure and the vesical pressure obtained from urodynamic tests. It can be concluded that the accuracy of the predicted pressure in the center of the bladder is significantly higher for the simulation assuming nonlinear material property (hyperelastic) for the bladder in comparison to the accuracy of the linear elastic model. The model is beneficial for exploring treatment solutions for SUI disorder. Graphical abstract 3D processing of bladder deformation during abdominal pressure of a the physiological model and b the pathological model (starting from left to right and up to down, consecutively)
ISSN:0140-0118
1741-0444
DOI:10.1007/s11517-020-02148-2