Loading…

Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals

This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal–organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2020-07, Vol.142 (27), p.11717-11733
Main Authors: Ko, Michael, Mendecki, Lukasz, Eagleton, Aileen M, Durbin, Claudia G, Stolz, Robert M, Meng, Zheng, Mirica, Katherine A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a390t-6b4dc62e4c3198f89525169396a137af80b3fa279d522a7011bcb1045e86c47f3
cites cdi_FETCH-LOGICAL-a390t-6b4dc62e4c3198f89525169396a137af80b3fa279d522a7011bcb1045e86c47f3
container_end_page 11733
container_issue 27
container_start_page 11717
container_title Journal of the American Chemical Society
container_volume 142
creator Ko, Michael
Mendecki, Lukasz
Eagleton, Aileen M
Durbin, Claudia G
Stolz, Robert M
Meng, Zheng
Mirica, Katherine A
description This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal–organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaimino­triphenylene (HITP) or O, 2,3,6,7,10,11-hexa­hydroxy­triphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM–200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM–200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.
doi_str_mv 10.1021/jacs.9b13402
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2376227038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376227038</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-6b4dc62e4c3198f89525169396a137af80b3fa279d522a7011bcb1045e86c47f3</originalsourceid><addsrcrecordid>eNptkL1OwzAUhS0EoqWwMaOMDKT4J46TEZUWkApdgAkpcpzrkhLHxU5A3XgH3pAnIVULLExHV_ecc3U_hI4JHhJMyflCKj9Mc8IiTHdQn3CKQ05ovIv6GGMaiiRmPXTg_aIbI5qQfdRjlHCOueijp7FZVnZV1vNgZOuiVU35BsEtNLL6-vicubmsSxVMnDTwbt2LD7R1waOtGmkMNK7bXUIDXcrWgdXBHbTOqmcwpZKVP0R7uhM42uoAPUzG96PrcDq7uhldTEPJUtyEcR4VKqYQKUbSRCcpp5zEKUtjSZiQOsE505KKtOCUSoEJyVVOcMQhiVUkNBug003v0tnXFnyTmdIrqCpZg219RpmIKRWYJZ31bGNVznrvQGdLVxrpVhnB2ZpntuaZbXl29pNtc5sbKH7NPwD_Tq9TC9u6unv0_65vYuV_Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376227038</pqid></control><display><type>article</type><title>Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ko, Michael ; Mendecki, Lukasz ; Eagleton, Aileen M ; Durbin, Claudia G ; Stolz, Robert M ; Meng, Zheng ; Mirica, Katherine A</creator><creatorcontrib>Ko, Michael ; Mendecki, Lukasz ; Eagleton, Aileen M ; Durbin, Claudia G ; Stolz, Robert M ; Meng, Zheng ; Mirica, Katherine A</creatorcontrib><description>This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal–organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaimino­triphenylene (HITP) or O, 2,3,6,7,10,11-hexa­hydroxy­triphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM–200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM–200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b13402</identifier><identifier>PMID: 32155057</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ascorbic Acid - analysis ; Biosensing Techniques ; Dopamine - analysis ; Electric Conductivity ; Electrochemical Techniques ; Electrodes ; Metal-Organic Frameworks - chemistry ; Particle Size ; Serotonin - analysis ; Surface Properties ; Uric Acid - analysis</subject><ispartof>Journal of the American Chemical Society, 2020-07, Vol.142 (27), p.11717-11733</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-6b4dc62e4c3198f89525169396a137af80b3fa279d522a7011bcb1045e86c47f3</citedby><cites>FETCH-LOGICAL-a390t-6b4dc62e4c3198f89525169396a137af80b3fa279d522a7011bcb1045e86c47f3</cites><orcidid>0000-0002-1779-7568 ; 0000-0002-6775-3213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32155057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, Michael</creatorcontrib><creatorcontrib>Mendecki, Lukasz</creatorcontrib><creatorcontrib>Eagleton, Aileen M</creatorcontrib><creatorcontrib>Durbin, Claudia G</creatorcontrib><creatorcontrib>Stolz, Robert M</creatorcontrib><creatorcontrib>Meng, Zheng</creatorcontrib><creatorcontrib>Mirica, Katherine A</creatorcontrib><title>Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal–organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaimino­triphenylene (HITP) or O, 2,3,6,7,10,11-hexa­hydroxy­triphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM–200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM–200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.</description><subject>Ascorbic Acid - analysis</subject><subject>Biosensing Techniques</subject><subject>Dopamine - analysis</subject><subject>Electric Conductivity</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Particle Size</subject><subject>Serotonin - analysis</subject><subject>Surface Properties</subject><subject>Uric Acid - analysis</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAUhS0EoqWwMaOMDKT4J46TEZUWkApdgAkpcpzrkhLHxU5A3XgH3pAnIVULLExHV_ecc3U_hI4JHhJMyflCKj9Mc8IiTHdQn3CKQ05ovIv6GGMaiiRmPXTg_aIbI5qQfdRjlHCOueijp7FZVnZV1vNgZOuiVU35BsEtNLL6-vicubmsSxVMnDTwbt2LD7R1waOtGmkMNK7bXUIDXcrWgdXBHbTOqmcwpZKVP0R7uhM42uoAPUzG96PrcDq7uhldTEPJUtyEcR4VKqYQKUbSRCcpp5zEKUtjSZiQOsE505KKtOCUSoEJyVVOcMQhiVUkNBug003v0tnXFnyTmdIrqCpZg219RpmIKRWYJZ31bGNVznrvQGdLVxrpVhnB2ZpntuaZbXl29pNtc5sbKH7NPwD_Tq9TC9u6unv0_65vYuV_Wg</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>Ko, Michael</creator><creator>Mendecki, Lukasz</creator><creator>Eagleton, Aileen M</creator><creator>Durbin, Claudia G</creator><creator>Stolz, Robert M</creator><creator>Meng, Zheng</creator><creator>Mirica, Katherine A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1779-7568</orcidid><orcidid>https://orcid.org/0000-0002-6775-3213</orcidid></search><sort><creationdate>20200708</creationdate><title>Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals</title><author>Ko, Michael ; Mendecki, Lukasz ; Eagleton, Aileen M ; Durbin, Claudia G ; Stolz, Robert M ; Meng, Zheng ; Mirica, Katherine A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-6b4dc62e4c3198f89525169396a137af80b3fa279d522a7011bcb1045e86c47f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ascorbic Acid - analysis</topic><topic>Biosensing Techniques</topic><topic>Dopamine - analysis</topic><topic>Electric Conductivity</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Particle Size</topic><topic>Serotonin - analysis</topic><topic>Surface Properties</topic><topic>Uric Acid - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Michael</creatorcontrib><creatorcontrib>Mendecki, Lukasz</creatorcontrib><creatorcontrib>Eagleton, Aileen M</creatorcontrib><creatorcontrib>Durbin, Claudia G</creatorcontrib><creatorcontrib>Stolz, Robert M</creatorcontrib><creatorcontrib>Meng, Zheng</creatorcontrib><creatorcontrib>Mirica, Katherine A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Michael</au><au>Mendecki, Lukasz</au><au>Eagleton, Aileen M</au><au>Durbin, Claudia G</au><au>Stolz, Robert M</au><au>Meng, Zheng</au><au>Mirica, Katherine A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-07-08</date><risdate>2020</risdate><volume>142</volume><issue>27</issue><spage>11717</spage><epage>11733</epage><pages>11717-11733</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal–organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaimino­triphenylene (HITP) or O, 2,3,6,7,10,11-hexa­hydroxy­triphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM–200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM–200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32155057</pmid><doi>10.1021/jacs.9b13402</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1779-7568</orcidid><orcidid>https://orcid.org/0000-0002-6775-3213</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-07, Vol.142 (27), p.11717-11733
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2376227038
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Ascorbic Acid - analysis
Biosensing Techniques
Dopamine - analysis
Electric Conductivity
Electrochemical Techniques
Electrodes
Metal-Organic Frameworks - chemistry
Particle Size
Serotonin - analysis
Surface Properties
Uric Acid - analysis
title Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Employing%20Conductive%20Metal%E2%80%93Organic%20Frameworks%20for%20Voltammetric%20Detection%20of%20Neurochemicals&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Ko,%20Michael&rft.date=2020-07-08&rft.volume=142&rft.issue=27&rft.spage=11717&rft.epage=11733&rft.pages=11717-11733&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b13402&rft_dat=%3Cproquest_cross%3E2376227038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a390t-6b4dc62e4c3198f89525169396a137af80b3fa279d522a7011bcb1045e86c47f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376227038&rft_id=info:pmid/32155057&rfr_iscdi=true