Loading…
Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink
The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other mate...
Saved in:
Published in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-10, Vol.108 (7), p.2718-2732 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3 |
container_end_page | 2732 |
container_issue | 7 |
container_start_page | 2718 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 108 |
creator | Pisani, Silvia Dorati, Rossella Scocozza, Franca Mariotti, Camilla Chiesa, Enrica Bruni, Giovanna Genta, Ida Auricchio, Ferdinando Conti, Michele Conti, Bice |
description | The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D‐bioprinting such as gelatin or alginate. Cs/ Gamma‐PGA hydrogel was prepared by double extrusion of Gamma‐PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D‐Bioprinter at 37°C. A computer aided design model was used to get 3D‐bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D‐bioprinted hydrogel gelation time resulted to be |
doi_str_mv | 10.1002/jbm.b.34602 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2376234045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376234045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOj5W7qXgRpGOeTVNlzr4ZEQXuhPCbZuMGdt0bFpldn6C3-iXGB114UII3CwOh3sPQtsEDwnG9HCa18N8yLjAdAkNSJLQmGeSLP_-U7aG1r2fBljghK2iNUZJkmU0GaD7m1ZXtrYO2nlk3bP2nZ1AZxsXhQeR0y-Rg65voYpy8LqMZk0135tAXcP769uk6juobRFBYcv9w9GD7RoPLsptY93jJloxUHm99T030N3pye3oPB5fn12MjsZxwSmjMcM5SXApSwlciJThArQxnMtMZAwyYbChpaZCgMxSDimWnFJsTJpLaUQJbAPtLbyztnnqwwmqtr7QVQVON71XlKWCMo55EtDdP-i06VsXtlOUMynTTJA0UAcLqmgb71tt1Ky1dUikCFaf0VWIrnL1FT3QO9_OPq91-cv-VA4AXQAvttLz_1zq8vjqeGH9ACgajRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438879617</pqid></control><display><type>article</type><title>Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Pisani, Silvia ; Dorati, Rossella ; Scocozza, Franca ; Mariotti, Camilla ; Chiesa, Enrica ; Bruni, Giovanna ; Genta, Ida ; Auricchio, Ferdinando ; Conti, Michele ; Conti, Bice</creator><creatorcontrib>Pisani, Silvia ; Dorati, Rossella ; Scocozza, Franca ; Mariotti, Camilla ; Chiesa, Enrica ; Bruni, Giovanna ; Genta, Ida ; Auricchio, Ferdinando ; Conti, Michele ; Conti, Bice</creatorcontrib><description>The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D‐bioprinting such as gelatin or alginate. Cs/ Gamma‐PGA hydrogel was prepared by double extrusion of Gamma‐PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D‐Bioprinter at 37°C. A computer aided design model was used to get 3D‐bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D‐bioprinted hydrogel gelation time resulted to be <60 s, hydrogel structure was maintained up to 36.79 Pa shear stress, FTIR analysis demonstrated Gamma‐PGA/Cs interpolyelectrolyte complex formation. The 3D‐bioprinted hydrogel was stable for 35 days (35% ML) in cell culture medium, with increasing FU. Cell loaded 3D‐bioprinted Cs 6% hydrogel was able to retain 70% of cells which survived to printing process and cell viability was maintained during 14 days incubation.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34602</identifier><identifier>PMID: 32159925</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3D‐bioprinting ; Alginates ; Alginic acid ; Biocompatibility ; Biodegradability ; Biodegradation ; Bioengineering ; Biomedical materials ; CAD ; Cell culture ; Cell viability ; Chitosan ; Complex formation ; Computer aided design ; Extrusion ; Fibroblasts ; Gelatin ; Gelation ; Glutamic acid ; hydrogel ; Hydrogels ; interpolyelectrolyte complex ; Materials research ; Materials science ; poly(gamma‐glutamic acid) ; Polymers ; Rheological properties ; Rheology ; Shear stress ; Stability analysis ; Three dimensional models ; Three dimensional printing</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-10, Vol.108 (7), p.2718-2732</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3</citedby><cites>FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3</cites><orcidid>0000-0002-0034-2815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32159925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pisani, Silvia</creatorcontrib><creatorcontrib>Dorati, Rossella</creatorcontrib><creatorcontrib>Scocozza, Franca</creatorcontrib><creatorcontrib>Mariotti, Camilla</creatorcontrib><creatorcontrib>Chiesa, Enrica</creatorcontrib><creatorcontrib>Bruni, Giovanna</creatorcontrib><creatorcontrib>Genta, Ida</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><creatorcontrib>Conti, Bice</creatorcontrib><title>Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D‐bioprinting such as gelatin or alginate. Cs/ Gamma‐PGA hydrogel was prepared by double extrusion of Gamma‐PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D‐Bioprinter at 37°C. A computer aided design model was used to get 3D‐bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D‐bioprinted hydrogel gelation time resulted to be <60 s, hydrogel structure was maintained up to 36.79 Pa shear stress, FTIR analysis demonstrated Gamma‐PGA/Cs interpolyelectrolyte complex formation. The 3D‐bioprinted hydrogel was stable for 35 days (35% ML) in cell culture medium, with increasing FU. Cell loaded 3D‐bioprinted Cs 6% hydrogel was able to retain 70% of cells which survived to printing process and cell viability was maintained during 14 days incubation.</description><subject>3D‐bioprinting</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>CAD</subject><subject>Cell culture</subject><subject>Cell viability</subject><subject>Chitosan</subject><subject>Complex formation</subject><subject>Computer aided design</subject><subject>Extrusion</subject><subject>Fibroblasts</subject><subject>Gelatin</subject><subject>Gelation</subject><subject>Glutamic acid</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>interpolyelectrolyte complex</subject><subject>Materials research</subject><subject>Materials science</subject><subject>poly(gamma‐glutamic acid)</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>Stability analysis</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOj5W7qXgRpGOeTVNlzr4ZEQXuhPCbZuMGdt0bFpldn6C3-iXGB114UII3CwOh3sPQtsEDwnG9HCa18N8yLjAdAkNSJLQmGeSLP_-U7aG1r2fBljghK2iNUZJkmU0GaD7m1ZXtrYO2nlk3bP2nZ1AZxsXhQeR0y-Rg65voYpy8LqMZk0135tAXcP769uk6juobRFBYcv9w9GD7RoPLsptY93jJloxUHm99T030N3pye3oPB5fn12MjsZxwSmjMcM5SXApSwlciJThArQxnMtMZAwyYbChpaZCgMxSDimWnFJsTJpLaUQJbAPtLbyztnnqwwmqtr7QVQVON71XlKWCMo55EtDdP-i06VsXtlOUMynTTJA0UAcLqmgb71tt1Ky1dUikCFaf0VWIrnL1FT3QO9_OPq91-cv-VA4AXQAvttLz_1zq8vjqeGH9ACgajRg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Pisani, Silvia</creator><creator>Dorati, Rossella</creator><creator>Scocozza, Franca</creator><creator>Mariotti, Camilla</creator><creator>Chiesa, Enrica</creator><creator>Bruni, Giovanna</creator><creator>Genta, Ida</creator><creator>Auricchio, Ferdinando</creator><creator>Conti, Michele</creator><creator>Conti, Bice</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0034-2815</orcidid></search><sort><creationdate>202010</creationdate><title>Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink</title><author>Pisani, Silvia ; Dorati, Rossella ; Scocozza, Franca ; Mariotti, Camilla ; Chiesa, Enrica ; Bruni, Giovanna ; Genta, Ida ; Auricchio, Ferdinando ; Conti, Michele ; Conti, Bice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D‐bioprinting</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>CAD</topic><topic>Cell culture</topic><topic>Cell viability</topic><topic>Chitosan</topic><topic>Complex formation</topic><topic>Computer aided design</topic><topic>Extrusion</topic><topic>Fibroblasts</topic><topic>Gelatin</topic><topic>Gelation</topic><topic>Glutamic acid</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>interpolyelectrolyte complex</topic><topic>Materials research</topic><topic>Materials science</topic><topic>poly(gamma‐glutamic acid)</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>Stability analysis</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pisani, Silvia</creatorcontrib><creatorcontrib>Dorati, Rossella</creatorcontrib><creatorcontrib>Scocozza, Franca</creatorcontrib><creatorcontrib>Mariotti, Camilla</creatorcontrib><creatorcontrib>Chiesa, Enrica</creatorcontrib><creatorcontrib>Bruni, Giovanna</creatorcontrib><creatorcontrib>Genta, Ida</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><creatorcontrib>Conti, Bice</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pisani, Silvia</au><au>Dorati, Rossella</au><au>Scocozza, Franca</au><au>Mariotti, Camilla</au><au>Chiesa, Enrica</au><au>Bruni, Giovanna</au><au>Genta, Ida</au><au>Auricchio, Ferdinando</au><au>Conti, Michele</au><au>Conti, Bice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-10</date><risdate>2020</risdate><volume>108</volume><issue>7</issue><spage>2718</spage><epage>2732</epage><pages>2718-2732</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D‐bioprinting such as gelatin or alginate. Cs/ Gamma‐PGA hydrogel was prepared by double extrusion of Gamma‐PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D‐Bioprinter at 37°C. A computer aided design model was used to get 3D‐bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D‐bioprinted hydrogel gelation time resulted to be <60 s, hydrogel structure was maintained up to 36.79 Pa shear stress, FTIR analysis demonstrated Gamma‐PGA/Cs interpolyelectrolyte complex formation. The 3D‐bioprinted hydrogel was stable for 35 days (35% ML) in cell culture medium, with increasing FU. Cell loaded 3D‐bioprinted Cs 6% hydrogel was able to retain 70% of cells which survived to printing process and cell viability was maintained during 14 days incubation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32159925</pmid><doi>10.1002/jbm.b.34602</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0034-2815</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2020-10, Vol.108 (7), p.2718-2732 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2376234045 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3D‐bioprinting Alginates Alginic acid Biocompatibility Biodegradability Biodegradation Bioengineering Biomedical materials CAD Cell culture Cell viability Chitosan Complex formation Computer aided design Extrusion Fibroblasts Gelatin Gelation Glutamic acid hydrogel Hydrogels interpolyelectrolyte complex Materials research Materials science poly(gamma‐glutamic acid) Polymers Rheological properties Rheology Shear stress Stability analysis Three dimensional models Three dimensional printing |
title | Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preliminary%20investigation%20on%20a%20new%20natural%20based%20poly(gamma%E2%80%90glutamic%20acid)/Chitosan%20bioink&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Pisani,%20Silvia&rft.date=2020-10&rft.volume=108&rft.issue=7&rft.spage=2718&rft.epage=2732&rft.pages=2718-2732&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34602&rft_dat=%3Cproquest_cross%3E2376234045%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438879617&rft_id=info:pmid/32159925&rfr_iscdi=true |