Loading…

Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink

The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other mate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-10, Vol.108 (7), p.2718-2732
Main Authors: Pisani, Silvia, Dorati, Rossella, Scocozza, Franca, Mariotti, Camilla, Chiesa, Enrica, Bruni, Giovanna, Genta, Ida, Auricchio, Ferdinando, Conti, Michele, Conti, Bice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3
cites cdi_FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3
container_end_page 2732
container_issue 7
container_start_page 2718
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 108
creator Pisani, Silvia
Dorati, Rossella
Scocozza, Franca
Mariotti, Camilla
Chiesa, Enrica
Bruni, Giovanna
Genta, Ida
Auricchio, Ferdinando
Conti, Michele
Conti, Bice
description The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D‐bioprinting such as gelatin or alginate. Cs/ Gamma‐PGA hydrogel was prepared by double extrusion of Gamma‐PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D‐Bioprinter at 37°C. A computer aided design model was used to get 3D‐bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D‐bioprinted hydrogel gelation time resulted to be
doi_str_mv 10.1002/jbm.b.34602
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2376234045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376234045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOj5W7qXgRpGOeTVNlzr4ZEQXuhPCbZuMGdt0bFpldn6C3-iXGB114UII3CwOh3sPQtsEDwnG9HCa18N8yLjAdAkNSJLQmGeSLP_-U7aG1r2fBljghK2iNUZJkmU0GaD7m1ZXtrYO2nlk3bP2nZ1AZxsXhQeR0y-Rg65voYpy8LqMZk0135tAXcP769uk6juobRFBYcv9w9GD7RoPLsptY93jJloxUHm99T030N3pye3oPB5fn12MjsZxwSmjMcM5SXApSwlciJThArQxnMtMZAwyYbChpaZCgMxSDimWnFJsTJpLaUQJbAPtLbyztnnqwwmqtr7QVQVON71XlKWCMo55EtDdP-i06VsXtlOUMynTTJA0UAcLqmgb71tt1Ky1dUikCFaf0VWIrnL1FT3QO9_OPq91-cv-VA4AXQAvttLz_1zq8vjqeGH9ACgajRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438879617</pqid></control><display><type>article</type><title>Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Pisani, Silvia ; Dorati, Rossella ; Scocozza, Franca ; Mariotti, Camilla ; Chiesa, Enrica ; Bruni, Giovanna ; Genta, Ida ; Auricchio, Ferdinando ; Conti, Michele ; Conti, Bice</creator><creatorcontrib>Pisani, Silvia ; Dorati, Rossella ; Scocozza, Franca ; Mariotti, Camilla ; Chiesa, Enrica ; Bruni, Giovanna ; Genta, Ida ; Auricchio, Ferdinando ; Conti, Michele ; Conti, Bice</creatorcontrib><description>The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D‐bioprinting such as gelatin or alginate. Cs/ Gamma‐PGA hydrogel was prepared by double extrusion of Gamma‐PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D‐Bioprinter at 37°C. A computer aided design model was used to get 3D‐bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D‐bioprinted hydrogel gelation time resulted to be &lt;60 s, hydrogel structure was maintained up to 36.79 Pa shear stress, FTIR analysis demonstrated Gamma‐PGA/Cs interpolyelectrolyte complex formation. The 3D‐bioprinted hydrogel was stable for 35 days (35% ML) in cell culture medium, with increasing FU. Cell loaded 3D‐bioprinted Cs 6% hydrogel was able to retain 70% of cells which survived to printing process and cell viability was maintained during 14 days incubation.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34602</identifier><identifier>PMID: 32159925</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3D‐bioprinting ; Alginates ; Alginic acid ; Biocompatibility ; Biodegradability ; Biodegradation ; Bioengineering ; Biomedical materials ; CAD ; Cell culture ; Cell viability ; Chitosan ; Complex formation ; Computer aided design ; Extrusion ; Fibroblasts ; Gelatin ; Gelation ; Glutamic acid ; hydrogel ; Hydrogels ; interpolyelectrolyte complex ; Materials research ; Materials science ; poly(gamma‐glutamic acid) ; Polymers ; Rheological properties ; Rheology ; Shear stress ; Stability analysis ; Three dimensional models ; Three dimensional printing</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-10, Vol.108 (7), p.2718-2732</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3</citedby><cites>FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3</cites><orcidid>0000-0002-0034-2815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32159925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pisani, Silvia</creatorcontrib><creatorcontrib>Dorati, Rossella</creatorcontrib><creatorcontrib>Scocozza, Franca</creatorcontrib><creatorcontrib>Mariotti, Camilla</creatorcontrib><creatorcontrib>Chiesa, Enrica</creatorcontrib><creatorcontrib>Bruni, Giovanna</creatorcontrib><creatorcontrib>Genta, Ida</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><creatorcontrib>Conti, Bice</creatorcontrib><title>Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D‐bioprinting such as gelatin or alginate. Cs/ Gamma‐PGA hydrogel was prepared by double extrusion of Gamma‐PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D‐Bioprinter at 37°C. A computer aided design model was used to get 3D‐bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D‐bioprinted hydrogel gelation time resulted to be &lt;60 s, hydrogel structure was maintained up to 36.79 Pa shear stress, FTIR analysis demonstrated Gamma‐PGA/Cs interpolyelectrolyte complex formation. The 3D‐bioprinted hydrogel was stable for 35 days (35% ML) in cell culture medium, with increasing FU. Cell loaded 3D‐bioprinted Cs 6% hydrogel was able to retain 70% of cells which survived to printing process and cell viability was maintained during 14 days incubation.</description><subject>3D‐bioprinting</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>CAD</subject><subject>Cell culture</subject><subject>Cell viability</subject><subject>Chitosan</subject><subject>Complex formation</subject><subject>Computer aided design</subject><subject>Extrusion</subject><subject>Fibroblasts</subject><subject>Gelatin</subject><subject>Gelation</subject><subject>Glutamic acid</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>interpolyelectrolyte complex</subject><subject>Materials research</subject><subject>Materials science</subject><subject>poly(gamma‐glutamic acid)</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>Stability analysis</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOj5W7qXgRpGOeTVNlzr4ZEQXuhPCbZuMGdt0bFpldn6C3-iXGB114UII3CwOh3sPQtsEDwnG9HCa18N8yLjAdAkNSJLQmGeSLP_-U7aG1r2fBljghK2iNUZJkmU0GaD7m1ZXtrYO2nlk3bP2nZ1AZxsXhQeR0y-Rg65voYpy8LqMZk0135tAXcP769uk6juobRFBYcv9w9GD7RoPLsptY93jJloxUHm99T030N3pye3oPB5fn12MjsZxwSmjMcM5SXApSwlciJThArQxnMtMZAwyYbChpaZCgMxSDimWnFJsTJpLaUQJbAPtLbyztnnqwwmqtr7QVQVON71XlKWCMo55EtDdP-i06VsXtlOUMynTTJA0UAcLqmgb71tt1Ky1dUikCFaf0VWIrnL1FT3QO9_OPq91-cv-VA4AXQAvttLz_1zq8vjqeGH9ACgajRg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Pisani, Silvia</creator><creator>Dorati, Rossella</creator><creator>Scocozza, Franca</creator><creator>Mariotti, Camilla</creator><creator>Chiesa, Enrica</creator><creator>Bruni, Giovanna</creator><creator>Genta, Ida</creator><creator>Auricchio, Ferdinando</creator><creator>Conti, Michele</creator><creator>Conti, Bice</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0034-2815</orcidid></search><sort><creationdate>202010</creationdate><title>Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink</title><author>Pisani, Silvia ; Dorati, Rossella ; Scocozza, Franca ; Mariotti, Camilla ; Chiesa, Enrica ; Bruni, Giovanna ; Genta, Ida ; Auricchio, Ferdinando ; Conti, Michele ; Conti, Bice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D‐bioprinting</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>CAD</topic><topic>Cell culture</topic><topic>Cell viability</topic><topic>Chitosan</topic><topic>Complex formation</topic><topic>Computer aided design</topic><topic>Extrusion</topic><topic>Fibroblasts</topic><topic>Gelatin</topic><topic>Gelation</topic><topic>Glutamic acid</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>interpolyelectrolyte complex</topic><topic>Materials research</topic><topic>Materials science</topic><topic>poly(gamma‐glutamic acid)</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>Stability analysis</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pisani, Silvia</creatorcontrib><creatorcontrib>Dorati, Rossella</creatorcontrib><creatorcontrib>Scocozza, Franca</creatorcontrib><creatorcontrib>Mariotti, Camilla</creatorcontrib><creatorcontrib>Chiesa, Enrica</creatorcontrib><creatorcontrib>Bruni, Giovanna</creatorcontrib><creatorcontrib>Genta, Ida</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><creatorcontrib>Conti, Bice</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pisani, Silvia</au><au>Dorati, Rossella</au><au>Scocozza, Franca</au><au>Mariotti, Camilla</au><au>Chiesa, Enrica</au><au>Bruni, Giovanna</au><au>Genta, Ida</au><au>Auricchio, Ferdinando</au><au>Conti, Michele</au><au>Conti, Bice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-10</date><risdate>2020</risdate><volume>108</volume><issue>7</issue><spage>2718</spage><epage>2732</epage><pages>2718-2732</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma‐glutamic acid) (Gamma‐PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D‐bioprinting such as gelatin or alginate. Cs/ Gamma‐PGA hydrogel was prepared by double extrusion of Gamma‐PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D‐Bioprinter at 37°C. A computer aided design model was used to get 3D‐bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D‐bioprinted hydrogel gelation time resulted to be &lt;60 s, hydrogel structure was maintained up to 36.79 Pa shear stress, FTIR analysis demonstrated Gamma‐PGA/Cs interpolyelectrolyte complex formation. The 3D‐bioprinted hydrogel was stable for 35 days (35% ML) in cell culture medium, with increasing FU. Cell loaded 3D‐bioprinted Cs 6% hydrogel was able to retain 70% of cells which survived to printing process and cell viability was maintained during 14 days incubation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32159925</pmid><doi>10.1002/jbm.b.34602</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0034-2815</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2020-10, Vol.108 (7), p.2718-2732
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2376234045
source Wiley-Blackwell Read & Publish Collection
subjects 3D‐bioprinting
Alginates
Alginic acid
Biocompatibility
Biodegradability
Biodegradation
Bioengineering
Biomedical materials
CAD
Cell culture
Cell viability
Chitosan
Complex formation
Computer aided design
Extrusion
Fibroblasts
Gelatin
Gelation
Glutamic acid
hydrogel
Hydrogels
interpolyelectrolyte complex
Materials research
Materials science
poly(gamma‐glutamic acid)
Polymers
Rheological properties
Rheology
Shear stress
Stability analysis
Three dimensional models
Three dimensional printing
title Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preliminary%20investigation%20on%20a%20new%20natural%20based%20poly(gamma%E2%80%90glutamic%20acid)/Chitosan%20bioink&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Pisani,%20Silvia&rft.date=2020-10&rft.volume=108&rft.issue=7&rft.spage=2718&rft.epage=2732&rft.pages=2718-2732&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34602&rft_dat=%3Cproquest_cross%3E2376234045%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4232-30b150d8d8a466730caeff4489693a96f0f2de266a8974a7084220ff7b88f6da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438879617&rft_id=info:pmid/32159925&rfr_iscdi=true