Loading…

Structure of the enterocyte transcytosis compartments during lipid absorption

In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and th...

Full description

Saved in:
Bibliographic Details
Published in:Histochemistry and cell biology 2020-06, Vol.153 (6), p.413-429
Main Authors: Sesorova, Irina S., Karelina, Natalia R., Kazakova, Tatiana E., Parashuraman, Seetharaman, Zdorikova, Maria A., Dimov, Ivan D., Seliverstova, Elena V., Beznoussenko, Galina V., Mironov, Alexander A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical the cis -most and the trans -most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into the cis -most cisterna and were concentrated in cisternal distensions at the trans -side of the Golgi complex. This induced attachment of the cis- most and the trans -most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of the cis- most and the trans -most cisternae and disappearance of vesicles. These data are discussed from the functional point of view. In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical the cis -most and the trans -most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into the cis -most cisterna and were concentrated in cisternal distensions at the trans -side of the Golgi comple
ISSN:0948-6143
1432-119X
DOI:10.1007/s00418-020-01851-3