Loading…
Resonant Photovoltaic Effect in Doped Magnetic Semiconductors
The rectified nonlinear response of a clean, time-reversal symmetric, undoped semiconductor to an ac electric field includes a well known intrinsic shift current. We show that when Kramers degeneracy is broken, a distinct second order rectified response appears due to Bloch state anomalous velocitie...
Saved in:
Published in: | Physical review letters 2020-02, Vol.124 (8), p.087402-087402, Article 087402 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rectified nonlinear response of a clean, time-reversal symmetric, undoped semiconductor to an ac electric field includes a well known intrinsic shift current. We show that when Kramers degeneracy is broken, a distinct second order rectified response appears due to Bloch state anomalous velocities in a system with an oscillating Fermi surface. This effect, which we refer to as the resonant photovoltaic effect, produces a resonant galvanic current peak at the interband absorption threshold in doped semiconductors or semimetals with approximate particle-hole symmetry. We evaluate the resonant photovoltaic effect for a model of the surface states of a magnetized topological insulator. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.124.087402 |