Loading…
Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode
We show that fused deposition modelling (FDM) 3D-printed electrodes can be used for quality control of fuel bioethanol. 3D-printing using carbon black/polylactic acid (CB-PLA) filaments resulted in conductive and biodegradable electrodes for biofuel analysis. As a proof-of-concept, copper determinat...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2020-05, Vol.412 (12), p.2755-2762 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-c0d01bdf1c91fa6420ba3932d237247c559540a6d86d3f504991dae29b9f4b713 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-c0d01bdf1c91fa6420ba3932d237247c559540a6d86d3f504991dae29b9f4b713 |
container_end_page | 2762 |
container_issue | 12 |
container_start_page | 2755 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 412 |
creator | João, Afonso F. Squissato, André L. Richter, Eduardo M. Muñoz, Rodrigo A. A. |
description | We show that fused deposition modelling (FDM) 3D-printed electrodes can be used for quality control of fuel bioethanol. 3D-printing using carbon black/polylactic acid (CB-PLA) filaments resulted in conductive and biodegradable electrodes for biofuel analysis. As a proof-of-concept, copper determination in fuel bioethanol was performed, as such ions catalyse oxidation processes during storage and transport. Square-wave anodic-stripping voltammetry (SWASV) of copper was achieved after sample dilution in 0.1 mol L
−1
HCl as supporting electrolyte (resulting in 30:70%
v
/
v
ethanol:water). The linear responses were in the range between 10 and 300 μg L
−1
(
R
= 0.999), inter-day precision was lower than 8% (
n
= 10, for 20 μg L
−1
) and limits of detection (LOD) and quantification (LOQ) using 180 s as deposition time were 0.097 μg L
−1
and 0.323 μg L
−1
, respectively. Recovery values between 95 and 103% for the analysis of bioethanol spiked with known amounts of copper were obtained. These results show great promise of the application of 3D-printed sensors for the quality control of biofuels.
Graphical abstract |
doi_str_mv | 10.1007/s00216-020-02513-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377351317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622615031</galeid><sourcerecordid>A622615031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c0d01bdf1c91fa6420ba3932d237247c559540a6d86d3f504991dae29b9f4b713</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhRtRnHH0BVxIwI2bnqkknf5xdxl_YcCNrpt0UrlmTCfXJC30M_jSpu1xBBcSQorw1aHqnKp6TuGSAnRXCYDRtgYG5QrK6_VBdU5b2tesFfDwvm7YWfUkpVsAKnraPq7OOKMd8B7Oq58HrW22P7CepV-MVHmJqElCn0JMxIRIJhvMgo5IL92abHpNVDidMBKNGeNsvcw2eGL9RmL-Kn1wZEnWH4kk_E19itbnoqlknAo3Oam-XZ2CW0uRrSLoUOUYND6tHhnpEj67ey-qL-_efr7-UN98ev_x-nBTq0bQXCvQQCdtqBqokWU7mCQfONOMd6zplBCDaEC2um81NwKaYaBaIhumwTRTR_lF9WrXPcXwfcGUx9kmhc5Jj2FJY9HpePGTdgV9-Q96G5ZYjNiooWM9tGIo1OVOHaXD0XoTcpSqHI2zVcGjseX_0DLWUgF8m4DtDSqGlCKasZg0y7iOFMYt23HPdizZjr-zHdfS9OJulmWaUd-3_AmzAHwH0mb5EePfYf8j-wsUJLDb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397280659</pqid></control><display><type>article</type><title>Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode</title><source>Springer Nature</source><creator>João, Afonso F. ; Squissato, André L. ; Richter, Eduardo M. ; Muñoz, Rodrigo A. A.</creator><creatorcontrib>João, Afonso F. ; Squissato, André L. ; Richter, Eduardo M. ; Muñoz, Rodrigo A. A.</creatorcontrib><description>We show that fused deposition modelling (FDM) 3D-printed electrodes can be used for quality control of fuel bioethanol. 3D-printing using carbon black/polylactic acid (CB-PLA) filaments resulted in conductive and biodegradable electrodes for biofuel analysis. As a proof-of-concept, copper determination in fuel bioethanol was performed, as such ions catalyse oxidation processes during storage and transport. Square-wave anodic-stripping voltammetry (SWASV) of copper was achieved after sample dilution in 0.1 mol L
−1
HCl as supporting electrolyte (resulting in 30:70%
v
/
v
ethanol:water). The linear responses were in the range between 10 and 300 μg L
−1
(
R
= 0.999), inter-day precision was lower than 8% (
n
= 10, for 20 μg L
−1
) and limits of detection (LOD) and quantification (LOQ) using 180 s as deposition time were 0.097 μg L
−1
and 0.323 μg L
−1
, respectively. Recovery values between 95 and 103% for the analysis of bioethanol spiked with known amounts of copper were obtained. These results show great promise of the application of 3D-printed sensors for the quality control of biofuels.
Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-02513-y</identifier><identifier>PMID: 32170380</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>ABC Highlights: authored by Rising Stars and Top Experts ; Analytical Chemistry ; Anodizing ; Biochemistry ; Biodegradability ; Biodegradation ; Biodiesel fuels ; Biofuels ; Biofuels - analysis ; Biomass ; Biomass energy ; Biosensing Techniques - methods ; Black carbon ; Carbon ; Carbon black ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Copper ; Copper - analysis ; Deposition ; Dilution ; Electrochemistry ; Electrodes ; Electrolytes ; Ethanol ; Filaments ; Food Science ; Fuels ; Fused deposition modeling ; Laboratory Medicine ; Limit of Detection ; Monitoring/Environmental Analysis ; Oxidation ; Oxidation-Reduction ; Polyesters - chemistry ; Polylactic acid ; Printing, Three-Dimensional ; Quality control ; Quality management ; Research Paper ; Sensors ; Soot - chemistry ; Three dimensional models ; Three dimensional printing</subject><ispartof>Analytical and bioanalytical chemistry, 2020-05, Vol.412 (12), p.2755-2762</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c0d01bdf1c91fa6420ba3932d237247c559540a6d86d3f504991dae29b9f4b713</citedby><cites>FETCH-LOGICAL-c451t-c0d01bdf1c91fa6420ba3932d237247c559540a6d86d3f504991dae29b9f4b713</cites><orcidid>0000-0001-8230-5825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32170380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>João, Afonso F.</creatorcontrib><creatorcontrib>Squissato, André L.</creatorcontrib><creatorcontrib>Richter, Eduardo M.</creatorcontrib><creatorcontrib>Muñoz, Rodrigo A. A.</creatorcontrib><title>Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>We show that fused deposition modelling (FDM) 3D-printed electrodes can be used for quality control of fuel bioethanol. 3D-printing using carbon black/polylactic acid (CB-PLA) filaments resulted in conductive and biodegradable electrodes for biofuel analysis. As a proof-of-concept, copper determination in fuel bioethanol was performed, as such ions catalyse oxidation processes during storage and transport. Square-wave anodic-stripping voltammetry (SWASV) of copper was achieved after sample dilution in 0.1 mol L
−1
HCl as supporting electrolyte (resulting in 30:70%
v
/
v
ethanol:water). The linear responses were in the range between 10 and 300 μg L
−1
(
R
= 0.999), inter-day precision was lower than 8% (
n
= 10, for 20 μg L
−1
) and limits of detection (LOD) and quantification (LOQ) using 180 s as deposition time were 0.097 μg L
−1
and 0.323 μg L
−1
, respectively. Recovery values between 95 and 103% for the analysis of bioethanol spiked with known amounts of copper were obtained. These results show great promise of the application of 3D-printed sensors for the quality control of biofuels.
Graphical abstract</description><subject>ABC Highlights: authored by Rising Stars and Top Experts</subject><subject>Analytical Chemistry</subject><subject>Anodizing</subject><subject>Biochemistry</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biofuels - analysis</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Biosensing Techniques - methods</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Copper - analysis</subject><subject>Deposition</subject><subject>Dilution</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Ethanol</subject><subject>Filaments</subject><subject>Food Science</subject><subject>Fuels</subject><subject>Fused deposition modeling</subject><subject>Laboratory Medicine</subject><subject>Limit of Detection</subject><subject>Monitoring/Environmental Analysis</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Polyesters - chemistry</subject><subject>Polylactic acid</subject><subject>Printing, Three-Dimensional</subject><subject>Quality control</subject><subject>Quality management</subject><subject>Research Paper</subject><subject>Sensors</subject><subject>Soot - chemistry</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFTEQhRtRnHH0BVxIwI2bnqkknf5xdxl_YcCNrpt0UrlmTCfXJC30M_jSpu1xBBcSQorw1aHqnKp6TuGSAnRXCYDRtgYG5QrK6_VBdU5b2tesFfDwvm7YWfUkpVsAKnraPq7OOKMd8B7Oq58HrW22P7CepV-MVHmJqElCn0JMxIRIJhvMgo5IL92abHpNVDidMBKNGeNsvcw2eGL9RmL-Kn1wZEnWH4kk_E19itbnoqlknAo3Oam-XZ2CW0uRrSLoUOUYND6tHhnpEj67ey-qL-_efr7-UN98ev_x-nBTq0bQXCvQQCdtqBqokWU7mCQfONOMd6zplBCDaEC2um81NwKaYaBaIhumwTRTR_lF9WrXPcXwfcGUx9kmhc5Jj2FJY9HpePGTdgV9-Q96G5ZYjNiooWM9tGIo1OVOHaXD0XoTcpSqHI2zVcGjseX_0DLWUgF8m4DtDSqGlCKasZg0y7iOFMYt23HPdizZjr-zHdfS9OJulmWaUd-3_AmzAHwH0mb5EePfYf8j-wsUJLDb</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>João, Afonso F.</creator><creator>Squissato, André L.</creator><creator>Richter, Eduardo M.</creator><creator>Muñoz, Rodrigo A. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8230-5825</orcidid></search><sort><creationdate>20200501</creationdate><title>Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode</title><author>João, Afonso F. ; Squissato, André L. ; Richter, Eduardo M. ; Muñoz, Rodrigo A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c0d01bdf1c91fa6420ba3932d237247c559540a6d86d3f504991dae29b9f4b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ABC Highlights: authored by Rising Stars and Top Experts</topic><topic>Analytical Chemistry</topic><topic>Anodizing</topic><topic>Biochemistry</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biofuels - analysis</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Biosensing Techniques - methods</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Copper - analysis</topic><topic>Deposition</topic><topic>Dilution</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Ethanol</topic><topic>Filaments</topic><topic>Food Science</topic><topic>Fuels</topic><topic>Fused deposition modeling</topic><topic>Laboratory Medicine</topic><topic>Limit of Detection</topic><topic>Monitoring/Environmental Analysis</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Polyesters - chemistry</topic><topic>Polylactic acid</topic><topic>Printing, Three-Dimensional</topic><topic>Quality control</topic><topic>Quality management</topic><topic>Research Paper</topic><topic>Sensors</topic><topic>Soot - chemistry</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>João, Afonso F.</creatorcontrib><creatorcontrib>Squissato, André L.</creatorcontrib><creatorcontrib>Richter, Eduardo M.</creatorcontrib><creatorcontrib>Muñoz, Rodrigo A. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>João, Afonso F.</au><au>Squissato, André L.</au><au>Richter, Eduardo M.</au><au>Muñoz, Rodrigo A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>412</volume><issue>12</issue><spage>2755</spage><epage>2762</epage><pages>2755-2762</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>We show that fused deposition modelling (FDM) 3D-printed electrodes can be used for quality control of fuel bioethanol. 3D-printing using carbon black/polylactic acid (CB-PLA) filaments resulted in conductive and biodegradable electrodes for biofuel analysis. As a proof-of-concept, copper determination in fuel bioethanol was performed, as such ions catalyse oxidation processes during storage and transport. Square-wave anodic-stripping voltammetry (SWASV) of copper was achieved after sample dilution in 0.1 mol L
−1
HCl as supporting electrolyte (resulting in 30:70%
v
/
v
ethanol:water). The linear responses were in the range between 10 and 300 μg L
−1
(
R
= 0.999), inter-day precision was lower than 8% (
n
= 10, for 20 μg L
−1
) and limits of detection (LOD) and quantification (LOQ) using 180 s as deposition time were 0.097 μg L
−1
and 0.323 μg L
−1
, respectively. Recovery values between 95 and 103% for the analysis of bioethanol spiked with known amounts of copper were obtained. These results show great promise of the application of 3D-printed sensors for the quality control of biofuels.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32170380</pmid><doi>10.1007/s00216-020-02513-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8230-5825</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2020-05, Vol.412 (12), p.2755-2762 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2377351317 |
source | Springer Nature |
subjects | ABC Highlights: authored by Rising Stars and Top Experts Analytical Chemistry Anodizing Biochemistry Biodegradability Biodegradation Biodiesel fuels Biofuels Biofuels - analysis Biomass Biomass energy Biosensing Techniques - methods Black carbon Carbon Carbon black Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Copper Copper - analysis Deposition Dilution Electrochemistry Electrodes Electrolytes Ethanol Filaments Food Science Fuels Fused deposition modeling Laboratory Medicine Limit of Detection Monitoring/Environmental Analysis Oxidation Oxidation-Reduction Polyesters - chemistry Polylactic acid Printing, Three-Dimensional Quality control Quality management Research Paper Sensors Soot - chemistry Three dimensional models Three dimensional printing |
title | Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive-manufactured%20sensors%20for%20biofuel%20analysis:%20copper%20determination%20in%20bioethanol%20using%20a%203D-printed%20carbon%20black/polylactic%20electrode&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Jo%C3%A3o,%20Afonso%20F.&rft.date=2020-05-01&rft.volume=412&rft.issue=12&rft.spage=2755&rft.epage=2762&rft.pages=2755-2762&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-02513-y&rft_dat=%3Cgale_proqu%3EA622615031%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-c0d01bdf1c91fa6420ba3932d237247c559540a6d86d3f504991dae29b9f4b713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2397280659&rft_id=info:pmid/32170380&rft_galeid=A622615031&rfr_iscdi=true |