Loading…

A guide to regulation of the formation of biomolecular condensates

Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation...

Full description

Saved in:
Bibliographic Details
Published in:The FEBS journal 2020-05, Vol.287 (10), p.1924-1935
Main Authors: Bratek‐Skicki, Anna, Pancsa, Rita, Meszaros, Balint, Van Lindt, Joris, Tompa, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763
cites cdi_FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763
container_end_page 1935
container_issue 10
container_start_page 1924
container_title The FEBS journal
container_volume 287
creator Bratek‐Skicki, Anna
Pancsa, Rita
Meszaros, Balint
Van Lindt, Joris
Tompa, Peter
description Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase‐separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post‐translational modifications, and a broad range of phase‐separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell. In this ‘A Guide to…’, we discuss the main mechanisms regulating the formation of biomolecular condensates by liquid–liquid phase separation (LLPS). Whereas LLPS is a spontaneous process, it is under tight control in cells by several mechanisms. Modulatory regions within phase‐separating proteins, regulatory post‐translation modifications (PTMs) or alternative splicing of their driver regions, and specific environmental factors/solution conditions can all tune the tendency of a given system to undergo phase separation.
doi_str_mv 10.1111/febs.15254
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377356990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377356990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEYmNw4QFQJS4IaZA0SdMct2kDpEkcAIlb1KbO6NQ2I2mF9vZkdOzAAV9s2Z9-2z9ClwTfkRD3BnJ_R3jM2REaEsHiMUt4enyo2fsAnXm_xphyJuUpGtAYp1gmZIimk2jVlQVErY0crLoqa0vbRNZE7QdExrr60MhLW9sKdGBcpG1TQOOzFvw5OjFZ5eFin0fobTF_nT2Ol88PT7PJcqyppGws8hgzkxSUgDQ4ZdSkPC1YuJuFiSCacU2EkJCbTEpRcJrnWXgAhE4hEQkdoZted-PsZwe-VXXpNVRV1oDtvIqpEJQnUuKAXv9B17ZzTbhOxQyzWIR9PFC3PaWd9d6BURtX1pnbKoLVzlm1c1b9OBvgq71kl9dQHNBfKwNAeuCrrGD7j5RazKcvveg37OyBdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404270715</pqid></control><display><type>article</type><title>A guide to regulation of the formation of biomolecular condensates</title><source>Wiley</source><source>Free Full-Text Journals in Chemistry</source><creator>Bratek‐Skicki, Anna ; Pancsa, Rita ; Meszaros, Balint ; Van Lindt, Joris ; Tompa, Peter</creator><creatorcontrib>Bratek‐Skicki, Anna ; Pancsa, Rita ; Meszaros, Balint ; Van Lindt, Joris ; Tompa, Peter</creatorcontrib><description>Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase‐separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post‐translational modifications, and a broad range of phase‐separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell. In this ‘A Guide to…’, we discuss the main mechanisms regulating the formation of biomolecular condensates by liquid–liquid phase separation (LLPS). Whereas LLPS is a spontaneous process, it is under tight control in cells by several mechanisms. Modulatory regions within phase‐separating proteins, regulatory post‐translation modifications (PTMs) or alternative splicing of their driver regions, and specific environmental factors/solution conditions can all tune the tendency of a given system to undergo phase separation.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.15254</identifier><identifier>PMID: 32080961</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Alternative splicing ; Condensates ; Cytoplasm - chemistry ; Cytoplasm - genetics ; Humans ; In vivo methods and tests ; interaction partner ; Lipid bilayers ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; liquid ; liquid phase separation ; Liquid phases ; membraneless organelle ; Nucleoli ; Organelles ; Organelles - chemistry ; Organelles - genetics ; Phase separation ; phase transition ; post‐translational modification ; Protein Processing, Post-Translational - genetics ; Proteins - chemistry ; Proteins - genetics ; Regulation ; Regulatory mechanisms (biology) ; Regulatory sequences</subject><ispartof>The FEBS journal, 2020-05, Vol.287 (10), p.1924-1935</ispartof><rights>2020 Federation of European Biochemical Societies</rights><rights>2020 Federation of European Biochemical Societies.</rights><rights>Copyright © 2020 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763</citedby><cites>FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763</cites><orcidid>0000-0001-8042-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32080961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bratek‐Skicki, Anna</creatorcontrib><creatorcontrib>Pancsa, Rita</creatorcontrib><creatorcontrib>Meszaros, Balint</creatorcontrib><creatorcontrib>Van Lindt, Joris</creatorcontrib><creatorcontrib>Tompa, Peter</creatorcontrib><title>A guide to regulation of the formation of biomolecular condensates</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase‐separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post‐translational modifications, and a broad range of phase‐separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell. In this ‘A Guide to…’, we discuss the main mechanisms regulating the formation of biomolecular condensates by liquid–liquid phase separation (LLPS). Whereas LLPS is a spontaneous process, it is under tight control in cells by several mechanisms. Modulatory regions within phase‐separating proteins, regulatory post‐translation modifications (PTMs) or alternative splicing of their driver regions, and specific environmental factors/solution conditions can all tune the tendency of a given system to undergo phase separation.</description><subject>Alternative splicing</subject><subject>Condensates</subject><subject>Cytoplasm - chemistry</subject><subject>Cytoplasm - genetics</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>interaction partner</subject><subject>Lipid bilayers</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>liquid</subject><subject>liquid phase separation</subject><subject>Liquid phases</subject><subject>membraneless organelle</subject><subject>Nucleoli</subject><subject>Organelles</subject><subject>Organelles - chemistry</subject><subject>Organelles - genetics</subject><subject>Phase separation</subject><subject>phase transition</subject><subject>post‐translational modification</subject><subject>Protein Processing, Post-Translational - genetics</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Regulation</subject><subject>Regulatory mechanisms (biology)</subject><subject>Regulatory sequences</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEYmNw4QFQJS4IaZA0SdMct2kDpEkcAIlb1KbO6NQ2I2mF9vZkdOzAAV9s2Z9-2z9ClwTfkRD3BnJ_R3jM2REaEsHiMUt4enyo2fsAnXm_xphyJuUpGtAYp1gmZIimk2jVlQVErY0crLoqa0vbRNZE7QdExrr60MhLW9sKdGBcpG1TQOOzFvw5OjFZ5eFin0fobTF_nT2Ol88PT7PJcqyppGws8hgzkxSUgDQ4ZdSkPC1YuJuFiSCacU2EkJCbTEpRcJrnWXgAhE4hEQkdoZted-PsZwe-VXXpNVRV1oDtvIqpEJQnUuKAXv9B17ZzTbhOxQyzWIR9PFC3PaWd9d6BURtX1pnbKoLVzlm1c1b9OBvgq71kl9dQHNBfKwNAeuCrrGD7j5RazKcvveg37OyBdg</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Bratek‐Skicki, Anna</creator><creator>Pancsa, Rita</creator><creator>Meszaros, Balint</creator><creator>Van Lindt, Joris</creator><creator>Tompa, Peter</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8042-9939</orcidid></search><sort><creationdate>202005</creationdate><title>A guide to regulation of the formation of biomolecular condensates</title><author>Bratek‐Skicki, Anna ; Pancsa, Rita ; Meszaros, Balint ; Van Lindt, Joris ; Tompa, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative splicing</topic><topic>Condensates</topic><topic>Cytoplasm - chemistry</topic><topic>Cytoplasm - genetics</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>interaction partner</topic><topic>Lipid bilayers</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>liquid</topic><topic>liquid phase separation</topic><topic>Liquid phases</topic><topic>membraneless organelle</topic><topic>Nucleoli</topic><topic>Organelles</topic><topic>Organelles - chemistry</topic><topic>Organelles - genetics</topic><topic>Phase separation</topic><topic>phase transition</topic><topic>post‐translational modification</topic><topic>Protein Processing, Post-Translational - genetics</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Regulation</topic><topic>Regulatory mechanisms (biology)</topic><topic>Regulatory sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bratek‐Skicki, Anna</creatorcontrib><creatorcontrib>Pancsa, Rita</creatorcontrib><creatorcontrib>Meszaros, Balint</creatorcontrib><creatorcontrib>Van Lindt, Joris</creatorcontrib><creatorcontrib>Tompa, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bratek‐Skicki, Anna</au><au>Pancsa, Rita</au><au>Meszaros, Balint</au><au>Van Lindt, Joris</au><au>Tompa, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A guide to regulation of the formation of biomolecular condensates</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2020-05</date><risdate>2020</risdate><volume>287</volume><issue>10</issue><spage>1924</spage><epage>1935</epage><pages>1924-1935</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase‐separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post‐translational modifications, and a broad range of phase‐separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell. In this ‘A Guide to…’, we discuss the main mechanisms regulating the formation of biomolecular condensates by liquid–liquid phase separation (LLPS). Whereas LLPS is a spontaneous process, it is under tight control in cells by several mechanisms. Modulatory regions within phase‐separating proteins, regulatory post‐translation modifications (PTMs) or alternative splicing of their driver regions, and specific environmental factors/solution conditions can all tune the tendency of a given system to undergo phase separation.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32080961</pmid><doi>10.1111/febs.15254</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8042-9939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2020-05, Vol.287 (10), p.1924-1935
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2377356990
source Wiley; Free Full-Text Journals in Chemistry
subjects Alternative splicing
Condensates
Cytoplasm - chemistry
Cytoplasm - genetics
Humans
In vivo methods and tests
interaction partner
Lipid bilayers
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipids
liquid
liquid phase separation
Liquid phases
membraneless organelle
Nucleoli
Organelles
Organelles - chemistry
Organelles - genetics
Phase separation
phase transition
post‐translational modification
Protein Processing, Post-Translational - genetics
Proteins - chemistry
Proteins - genetics
Regulation
Regulatory mechanisms (biology)
Regulatory sequences
title A guide to regulation of the formation of biomolecular condensates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20guide%20to%20regulation%20of%20the%20formation%20of%20biomolecular%20condensates&rft.jtitle=The%20FEBS%20journal&rft.au=Bratek%E2%80%90Skicki,%20Anna&rft.date=2020-05&rft.volume=287&rft.issue=10&rft.spage=1924&rft.epage=1935&rft.pages=1924-1935&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.15254&rft_dat=%3Cproquest_cross%3E2377356990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404270715&rft_id=info:pmid/32080961&rfr_iscdi=true