Loading…
A guide to regulation of the formation of biomolecular condensates
Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation...
Saved in:
Published in: | The FEBS journal 2020-05, Vol.287 (10), p.1924-1935 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763 |
---|---|
cites | cdi_FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763 |
container_end_page | 1935 |
container_issue | 10 |
container_start_page | 1924 |
container_title | The FEBS journal |
container_volume | 287 |
creator | Bratek‐Skicki, Anna Pancsa, Rita Meszaros, Balint Van Lindt, Joris Tompa, Peter |
description | Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase‐separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post‐translational modifications, and a broad range of phase‐separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell.
In this ‘A Guide to…’, we discuss the main mechanisms regulating the formation of biomolecular condensates by liquid–liquid phase separation (LLPS). Whereas LLPS is a spontaneous process, it is under tight control in cells by several mechanisms. Modulatory regions within phase‐separating proteins, regulatory post‐translation modifications (PTMs) or alternative splicing of their driver regions, and specific environmental factors/solution conditions can all tune the tendency of a given system to undergo phase separation. |
doi_str_mv | 10.1111/febs.15254 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377356990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377356990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEYmNw4QFQJS4IaZA0SdMct2kDpEkcAIlb1KbO6NQ2I2mF9vZkdOzAAV9s2Z9-2z9ClwTfkRD3BnJ_R3jM2REaEsHiMUt4enyo2fsAnXm_xphyJuUpGtAYp1gmZIimk2jVlQVErY0crLoqa0vbRNZE7QdExrr60MhLW9sKdGBcpG1TQOOzFvw5OjFZ5eFin0fobTF_nT2Ol88PT7PJcqyppGws8hgzkxSUgDQ4ZdSkPC1YuJuFiSCacU2EkJCbTEpRcJrnWXgAhE4hEQkdoZted-PsZwe-VXXpNVRV1oDtvIqpEJQnUuKAXv9B17ZzTbhOxQyzWIR9PFC3PaWd9d6BURtX1pnbKoLVzlm1c1b9OBvgq71kl9dQHNBfKwNAeuCrrGD7j5RazKcvveg37OyBdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404270715</pqid></control><display><type>article</type><title>A guide to regulation of the formation of biomolecular condensates</title><source>Wiley</source><source>Free Full-Text Journals in Chemistry</source><creator>Bratek‐Skicki, Anna ; Pancsa, Rita ; Meszaros, Balint ; Van Lindt, Joris ; Tompa, Peter</creator><creatorcontrib>Bratek‐Skicki, Anna ; Pancsa, Rita ; Meszaros, Balint ; Van Lindt, Joris ; Tompa, Peter</creatorcontrib><description>Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase‐separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post‐translational modifications, and a broad range of phase‐separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell.
In this ‘A Guide to…’, we discuss the main mechanisms regulating the formation of biomolecular condensates by liquid–liquid phase separation (LLPS). Whereas LLPS is a spontaneous process, it is under tight control in cells by several mechanisms. Modulatory regions within phase‐separating proteins, regulatory post‐translation modifications (PTMs) or alternative splicing of their driver regions, and specific environmental factors/solution conditions can all tune the tendency of a given system to undergo phase separation.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.15254</identifier><identifier>PMID: 32080961</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Alternative splicing ; Condensates ; Cytoplasm - chemistry ; Cytoplasm - genetics ; Humans ; In vivo methods and tests ; interaction partner ; Lipid bilayers ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; liquid ; liquid phase separation ; Liquid phases ; membraneless organelle ; Nucleoli ; Organelles ; Organelles - chemistry ; Organelles - genetics ; Phase separation ; phase transition ; post‐translational modification ; Protein Processing, Post-Translational - genetics ; Proteins - chemistry ; Proteins - genetics ; Regulation ; Regulatory mechanisms (biology) ; Regulatory sequences</subject><ispartof>The FEBS journal, 2020-05, Vol.287 (10), p.1924-1935</ispartof><rights>2020 Federation of European Biochemical Societies</rights><rights>2020 Federation of European Biochemical Societies.</rights><rights>Copyright © 2020 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763</citedby><cites>FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763</cites><orcidid>0000-0001-8042-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32080961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bratek‐Skicki, Anna</creatorcontrib><creatorcontrib>Pancsa, Rita</creatorcontrib><creatorcontrib>Meszaros, Balint</creatorcontrib><creatorcontrib>Van Lindt, Joris</creatorcontrib><creatorcontrib>Tompa, Peter</creatorcontrib><title>A guide to regulation of the formation of biomolecular condensates</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase‐separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post‐translational modifications, and a broad range of phase‐separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell.
In this ‘A Guide to…’, we discuss the main mechanisms regulating the formation of biomolecular condensates by liquid–liquid phase separation (LLPS). Whereas LLPS is a spontaneous process, it is under tight control in cells by several mechanisms. Modulatory regions within phase‐separating proteins, regulatory post‐translation modifications (PTMs) or alternative splicing of their driver regions, and specific environmental factors/solution conditions can all tune the tendency of a given system to undergo phase separation.</description><subject>Alternative splicing</subject><subject>Condensates</subject><subject>Cytoplasm - chemistry</subject><subject>Cytoplasm - genetics</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>interaction partner</subject><subject>Lipid bilayers</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>liquid</subject><subject>liquid phase separation</subject><subject>Liquid phases</subject><subject>membraneless organelle</subject><subject>Nucleoli</subject><subject>Organelles</subject><subject>Organelles - chemistry</subject><subject>Organelles - genetics</subject><subject>Phase separation</subject><subject>phase transition</subject><subject>post‐translational modification</subject><subject>Protein Processing, Post-Translational - genetics</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Regulation</subject><subject>Regulatory mechanisms (biology)</subject><subject>Regulatory sequences</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEYmNw4QFQJS4IaZA0SdMct2kDpEkcAIlb1KbO6NQ2I2mF9vZkdOzAAV9s2Z9-2z9ClwTfkRD3BnJ_R3jM2REaEsHiMUt4enyo2fsAnXm_xphyJuUpGtAYp1gmZIimk2jVlQVErY0crLoqa0vbRNZE7QdExrr60MhLW9sKdGBcpG1TQOOzFvw5OjFZ5eFin0fobTF_nT2Ol88PT7PJcqyppGws8hgzkxSUgDQ4ZdSkPC1YuJuFiSCacU2EkJCbTEpRcJrnWXgAhE4hEQkdoZted-PsZwe-VXXpNVRV1oDtvIqpEJQnUuKAXv9B17ZzTbhOxQyzWIR9PFC3PaWd9d6BURtX1pnbKoLVzlm1c1b9OBvgq71kl9dQHNBfKwNAeuCrrGD7j5RazKcvveg37OyBdg</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Bratek‐Skicki, Anna</creator><creator>Pancsa, Rita</creator><creator>Meszaros, Balint</creator><creator>Van Lindt, Joris</creator><creator>Tompa, Peter</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8042-9939</orcidid></search><sort><creationdate>202005</creationdate><title>A guide to regulation of the formation of biomolecular condensates</title><author>Bratek‐Skicki, Anna ; Pancsa, Rita ; Meszaros, Balint ; Van Lindt, Joris ; Tompa, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative splicing</topic><topic>Condensates</topic><topic>Cytoplasm - chemistry</topic><topic>Cytoplasm - genetics</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>interaction partner</topic><topic>Lipid bilayers</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>liquid</topic><topic>liquid phase separation</topic><topic>Liquid phases</topic><topic>membraneless organelle</topic><topic>Nucleoli</topic><topic>Organelles</topic><topic>Organelles - chemistry</topic><topic>Organelles - genetics</topic><topic>Phase separation</topic><topic>phase transition</topic><topic>post‐translational modification</topic><topic>Protein Processing, Post-Translational - genetics</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Regulation</topic><topic>Regulatory mechanisms (biology)</topic><topic>Regulatory sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bratek‐Skicki, Anna</creatorcontrib><creatorcontrib>Pancsa, Rita</creatorcontrib><creatorcontrib>Meszaros, Balint</creatorcontrib><creatorcontrib>Van Lindt, Joris</creatorcontrib><creatorcontrib>Tompa, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bratek‐Skicki, Anna</au><au>Pancsa, Rita</au><au>Meszaros, Balint</au><au>Van Lindt, Joris</au><au>Tompa, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A guide to regulation of the formation of biomolecular condensates</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2020-05</date><risdate>2020</risdate><volume>287</volume><issue>10</issue><spage>1924</spage><epage>1935</epage><pages>1924-1935</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include ‘membraneless organelles’ (MLOs) by liquid–liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase‐separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post‐translational modifications, and a broad range of phase‐separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell.
In this ‘A Guide to…’, we discuss the main mechanisms regulating the formation of biomolecular condensates by liquid–liquid phase separation (LLPS). Whereas LLPS is a spontaneous process, it is under tight control in cells by several mechanisms. Modulatory regions within phase‐separating proteins, regulatory post‐translation modifications (PTMs) or alternative splicing of their driver regions, and specific environmental factors/solution conditions can all tune the tendency of a given system to undergo phase separation.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32080961</pmid><doi>10.1111/febs.15254</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8042-9939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2020-05, Vol.287 (10), p.1924-1935 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_2377356990 |
source | Wiley; Free Full-Text Journals in Chemistry |
subjects | Alternative splicing Condensates Cytoplasm - chemistry Cytoplasm - genetics Humans In vivo methods and tests interaction partner Lipid bilayers Lipid Bilayers - chemistry Lipid Bilayers - metabolism Lipids liquid liquid phase separation Liquid phases membraneless organelle Nucleoli Organelles Organelles - chemistry Organelles - genetics Phase separation phase transition post‐translational modification Protein Processing, Post-Translational - genetics Proteins - chemistry Proteins - genetics Regulation Regulatory mechanisms (biology) Regulatory sequences |
title | A guide to regulation of the formation of biomolecular condensates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20guide%20to%20regulation%20of%20the%20formation%20of%20biomolecular%20condensates&rft.jtitle=The%20FEBS%20journal&rft.au=Bratek%E2%80%90Skicki,%20Anna&rft.date=2020-05&rft.volume=287&rft.issue=10&rft.spage=1924&rft.epage=1935&rft.pages=1924-1935&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.15254&rft_dat=%3Cproquest_cross%3E2377356990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3934-7b204f6d31e9f0843f858d41524b2071c45c1779ebfa997d53bba742e7c8e6763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404270715&rft_id=info:pmid/32080961&rfr_iscdi=true |