Loading…
Dynamic prediction of uneven-aged natural forest for yield of Pinus taiwanensis using joint modelling
In order to determine the stand age in the uneven-aged natural forest, a dynamic prediction model of stand volume and biomass was established in this study. In the model, the site quality grade was used as the dumb variable and the interval was used as the independent variable. In addition, the para...
Saved in:
Published in: | Environmental monitoring and assessment 2020-04, Vol.192 (4), p.239-239, Article 239 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to determine the stand age in the uneven-aged natural forest, a dynamic prediction model of stand volume and biomass was established in this study. In the model, the site quality grade was used as the dumb variable and the interval was used as the independent variable. In addition, the parameters of the model were estimated using immune evolutionary algorithm. The model was verified with the field data and the result revealed that the model had high accuracy. On this basis, the dynamic prediction model for forest stock was applied to evaluate the asset evaluation of uneven-aged natural forest and estimate carbon storage/sink potential of forest biomass. The selective logging period of the forest in the four plots was determined at the selective logging intensity of 40%. However, at the selective logging intensity of 40%, the forest ecological environment was suffered from the adverse effect to a certain extent from the perspective of scientific management, diversity of species, etc. Based on the comprehensive consideration of all the factors, it is recommended to set the selective cutting intensity in the range of 30 to 35%. The results can provide technical support for the application of selective logging income method in asset evaluation. Therefore, the results of this study have theoretical significance and practical application value in dynamic prediction of forest resources, asset evaluation and management, decision-making, etc. |
---|---|
ISSN: | 0167-6369 1573-2959 |
DOI: | 10.1007/s10661-020-8204-7 |