Loading…

Capillary Assembly of Liquid Particles

Capillary assembly is a versatile method for depositing colloidal particles within templates, resulting in nano/microarrays and colloidal superstructures for optical, plasmonic, and sensory applications. Liquid particles (LPs), comprised of oligomerized 3‐(trimethoxysilyl)propyl methacrylate, are he...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-04, Vol.16 (16), p.e1907523-n/a
Main Authors: Shillingford, Cicely, Kim, Brandon M., Weck, Marcus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Capillary assembly is a versatile method for depositing colloidal particles within templates, resulting in nano/microarrays and colloidal superstructures for optical, plasmonic, and sensory applications. Liquid particles (LPs), comprised of oligomerized 3‐(trimethoxysilyl)propyl methacrylate, are herein shown to deposit into patterned cavities via capillary assembly. In contrast to solid colloids, LPs coalesce upon solvent evaporation and assume the geometry of the template. Incorporating small molecules such as dyes followed by LP solidification generates fluorescent polymer microarrays of any geometry. The LP size is inversely proportional to the quantity of deposited material and the convexity of the final polymer array. Cavity filling can be tuned by increasing the assembly temperature. Extraction of the polymerized regions produces solidified particles with faceted shapes including square prisms, trapezoids, and ellipsoids with sizes up to 14 µm that retain the shape of the cavity in which they are initially held. LP deposition thus presents a highly controllable fabrication scheme for geometrically diverse polymer microarrays and anisotropic colloids of any conceivable polygonal shape due to space filling of the template. The extension of capillary assembly to LPs that can be doped with small molecule dyes and analytes invaluably expands the synthetic toolbox for top‐down, scalable, hierarchically engineered materials. Template‐assisted capillary assembly of liquid organosilica colloidal particles is presented, whereby space filling of patterned cavities followed by solidification and removal of material generates composite polymer microarrays and faceted colloidal particles, respectively. Arrays and fluorescent particles with feature sizes from 2 to 14 µm are demonstrated with various geometries including square prisms, trapezoids, ellipsoids, and letters.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.201907523