Loading…
Convenient synthesis of thioamidated peptides and proteins
The unique physicochemical properties of a thioamide bond, which is an ideal isostere of an amide bond, have not been fully exploited because of the tedious synthesis of thionated amino acid building blocks. Here, we report a purification‐free and highly efficient synthesis of thiobenzotriazolides o...
Saved in:
Published in: | Journal of peptide science 2020-04, Vol.26 (4-5), p.e3248-n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unique physicochemical properties of a thioamide bond, which is an ideal isostere of an amide bond, have not been fully exploited because of the tedious synthesis of thionated amino acid building blocks. Here, we report a purification‐free and highly efficient synthesis of thiobenzotriazolides of Fmoc‐protected and orthogonally protected 20 naturally occurring amino acids including asparagine, glutamine, and histidine. The near‐quantitative conversion to the respective thioamidated peptides on solid support demonstrates the robustness of the synthetic route. Furthermore, the unaltered incorporation efficiency of thiobenzotriazolides from their stock solution till 48 h suggests their compatibility toward automated peptide synthesis. Finally, utilizing an optimized cocktail of 2% DBU + 5% piperazine for fast Fmoc‐deprotection, we report the synthesis of a thioamidated Pin1 WW domain and thioamidated GB1 directly on solid support.
A purification‐free method for the synthesis of thionated building blocks of all the 20 naturally occurring amino acids is presented. This, along with an optimized Fmoc‐cleavage condition on solid support, allows for the synthesis of thioamidated peptides and proteins directly on solid support. |
---|---|
ISSN: | 1075-2617 1099-1387 |
DOI: | 10.1002/psc.3248 |