Loading…

Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs

Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matri...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2020-03, Vol.124 (9), p.090503-090503, Article 090503
Main Authors: Czartowski, Jakub, Goyeneche, Dardo, Grassl, Markus, Życzkowski, Karol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943
cites cdi_FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943
container_end_page 090503
container_issue 9
container_start_page 090503
container_title Physical review letters
container_volume 124
creator Czartowski, Jakub
Goyeneche, Dardo
Grassl, Markus
Życzkowski, Karol
description Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.
doi_str_mv 10.1103/PhysRevLett.124.090503
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382643453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388008935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943</originalsourceid><addsrcrecordid>eNpdkdtOwzAMhiMEgnF4hakSN1zQ4cTp2lxyZtImDmOXqEpbDzr1AE2C2NuTaQMhbmzJ_n7L9s9Yn8OAc8Czh7eleaLPMVk74EIOQEEEuMV6HGIVxpzLbdYDQB4qgHiP7RuzAAAuhsku20MhQCRJ3GMvI9NSY3XzWlERTJx1uqqWwazJSm185cJHcxpMl3VNtivz4NHpxro6mJA2rqPai31fN15cflERTq22FFyRKV8bc8h25roydLTJB2x2c_18eReO729Hl-fjMEdUNtQcJUQY6xio4HOZqQhVjpL7o7gssnmeRUmeSwUkhNYJAZdxlA1RqUJzJfGAnaznvnfthyNj07o0OVWVbqh1JhWYiKFEGaFHj_-hi9Z1jd9uRSUAicLIU8M1lXetMR3N0_eurHW3TDmkKwPSPwak3oB0bYAX9jfjXVZT8Sv7-Th-Ay6Mg5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388008935</pqid></control><display><type>article</type><title>Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Czartowski, Jakub ; Goyeneche, Dardo ; Grassl, Markus ; Życzkowski, Karol</creator><creatorcontrib>Czartowski, Jakub ; Goyeneche, Dardo ; Grassl, Markus ; Życzkowski, Karol</creatorcontrib><description>Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.090503</identifier><identifier>PMID: 32202887</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Construction methods ; Density ; Hilbert space ; Information theory ; Quadratic equations ; Qubits (quantum computing)</subject><ispartof>Physical review letters, 2020-03, Vol.124 (9), p.090503-090503, Article 090503</ispartof><rights>Copyright American Physical Society Mar 6, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943</citedby><cites>FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943</cites><orcidid>0000-0002-0653-3639 ; 0000-0003-4062-833X ; 0000-0002-3720-5195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32202887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Czartowski, Jakub</creatorcontrib><creatorcontrib>Goyeneche, Dardo</creatorcontrib><creatorcontrib>Grassl, Markus</creatorcontrib><creatorcontrib>Życzkowski, Karol</creatorcontrib><title>Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.</description><subject>Construction methods</subject><subject>Density</subject><subject>Hilbert space</subject><subject>Information theory</subject><subject>Quadratic equations</subject><subject>Qubits (quantum computing)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkdtOwzAMhiMEgnF4hakSN1zQ4cTp2lxyZtImDmOXqEpbDzr1AE2C2NuTaQMhbmzJ_n7L9s9Yn8OAc8Czh7eleaLPMVk74EIOQEEEuMV6HGIVxpzLbdYDQB4qgHiP7RuzAAAuhsku20MhQCRJ3GMvI9NSY3XzWlERTJx1uqqWwazJSm185cJHcxpMl3VNtivz4NHpxro6mJA2rqPai31fN15cflERTq22FFyRKV8bc8h25roydLTJB2x2c_18eReO729Hl-fjMEdUNtQcJUQY6xio4HOZqQhVjpL7o7gssnmeRUmeSwUkhNYJAZdxlA1RqUJzJfGAnaznvnfthyNj07o0OVWVbqh1JhWYiKFEGaFHj_-hi9Z1jd9uRSUAicLIU8M1lXetMR3N0_eurHW3TDmkKwPSPwak3oB0bYAX9jfjXVZT8Sv7-Th-Ay6Mg5w</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Czartowski, Jakub</creator><creator>Goyeneche, Dardo</creator><creator>Grassl, Markus</creator><creator>Życzkowski, Karol</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0653-3639</orcidid><orcidid>https://orcid.org/0000-0003-4062-833X</orcidid><orcidid>https://orcid.org/0000-0002-3720-5195</orcidid></search><sort><creationdate>20200306</creationdate><title>Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs</title><author>Czartowski, Jakub ; Goyeneche, Dardo ; Grassl, Markus ; Życzkowski, Karol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Construction methods</topic><topic>Density</topic><topic>Hilbert space</topic><topic>Information theory</topic><topic>Quadratic equations</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czartowski, Jakub</creatorcontrib><creatorcontrib>Goyeneche, Dardo</creatorcontrib><creatorcontrib>Grassl, Markus</creatorcontrib><creatorcontrib>Życzkowski, Karol</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czartowski, Jakub</au><au>Goyeneche, Dardo</au><au>Grassl, Markus</au><au>Życzkowski, Karol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-03-06</date><risdate>2020</risdate><volume>124</volume><issue>9</issue><spage>090503</spage><epage>090503</epage><pages>090503-090503</pages><artnum>090503</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32202887</pmid><doi>10.1103/PhysRevLett.124.090503</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0653-3639</orcidid><orcidid>https://orcid.org/0000-0003-4062-833X</orcidid><orcidid>https://orcid.org/0000-0002-3720-5195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-03, Vol.124 (9), p.090503-090503, Article 090503
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2382643453
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Construction methods
Density
Hilbert space
Information theory
Quadratic equations
Qubits (quantum computing)
title Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoentangled%20Mutually%20Unbiased%20Bases,%20Symmetric%20Quantum%20Measurements,%20and%20Mixed-State%20Designs&rft.jtitle=Physical%20review%20letters&rft.au=Czartowski,%20Jakub&rft.date=2020-03-06&rft.volume=124&rft.issue=9&rft.spage=090503&rft.epage=090503&rft.pages=090503-090503&rft.artnum=090503&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.090503&rft_dat=%3Cproquest_cross%3E2388008935%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388008935&rft_id=info:pmid/32202887&rfr_iscdi=true