Loading…
Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs
Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matri...
Saved in:
Published in: | Physical review letters 2020-03, Vol.124 (9), p.090503-090503, Article 090503 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943 |
container_end_page | 090503 |
container_issue | 9 |
container_start_page | 090503 |
container_title | Physical review letters |
container_volume | 124 |
creator | Czartowski, Jakub Goyeneche, Dardo Grassl, Markus Życzkowski, Karol |
description | Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design. |
doi_str_mv | 10.1103/PhysRevLett.124.090503 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382643453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388008935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943</originalsourceid><addsrcrecordid>eNpdkdtOwzAMhiMEgnF4hakSN1zQ4cTp2lxyZtImDmOXqEpbDzr1AE2C2NuTaQMhbmzJ_n7L9s9Yn8OAc8Czh7eleaLPMVk74EIOQEEEuMV6HGIVxpzLbdYDQB4qgHiP7RuzAAAuhsku20MhQCRJ3GMvI9NSY3XzWlERTJx1uqqWwazJSm185cJHcxpMl3VNtivz4NHpxro6mJA2rqPai31fN15cflERTq22FFyRKV8bc8h25roydLTJB2x2c_18eReO729Hl-fjMEdUNtQcJUQY6xio4HOZqQhVjpL7o7gssnmeRUmeSwUkhNYJAZdxlA1RqUJzJfGAnaznvnfthyNj07o0OVWVbqh1JhWYiKFEGaFHj_-hi9Z1jd9uRSUAicLIU8M1lXetMR3N0_eurHW3TDmkKwPSPwak3oB0bYAX9jfjXVZT8Sv7-Th-Ay6Mg5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388008935</pqid></control><display><type>article</type><title>Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Czartowski, Jakub ; Goyeneche, Dardo ; Grassl, Markus ; Życzkowski, Karol</creator><creatorcontrib>Czartowski, Jakub ; Goyeneche, Dardo ; Grassl, Markus ; Życzkowski, Karol</creatorcontrib><description>Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.090503</identifier><identifier>PMID: 32202887</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Construction methods ; Density ; Hilbert space ; Information theory ; Quadratic equations ; Qubits (quantum computing)</subject><ispartof>Physical review letters, 2020-03, Vol.124 (9), p.090503-090503, Article 090503</ispartof><rights>Copyright American Physical Society Mar 6, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943</citedby><cites>FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943</cites><orcidid>0000-0002-0653-3639 ; 0000-0003-4062-833X ; 0000-0002-3720-5195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32202887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Czartowski, Jakub</creatorcontrib><creatorcontrib>Goyeneche, Dardo</creatorcontrib><creatorcontrib>Grassl, Markus</creatorcontrib><creatorcontrib>Życzkowski, Karol</creatorcontrib><title>Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.</description><subject>Construction methods</subject><subject>Density</subject><subject>Hilbert space</subject><subject>Information theory</subject><subject>Quadratic equations</subject><subject>Qubits (quantum computing)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkdtOwzAMhiMEgnF4hakSN1zQ4cTp2lxyZtImDmOXqEpbDzr1AE2C2NuTaQMhbmzJ_n7L9s9Yn8OAc8Czh7eleaLPMVk74EIOQEEEuMV6HGIVxpzLbdYDQB4qgHiP7RuzAAAuhsku20MhQCRJ3GMvI9NSY3XzWlERTJx1uqqWwazJSm185cJHcxpMl3VNtivz4NHpxro6mJA2rqPai31fN15cflERTq22FFyRKV8bc8h25roydLTJB2x2c_18eReO729Hl-fjMEdUNtQcJUQY6xio4HOZqQhVjpL7o7gssnmeRUmeSwUkhNYJAZdxlA1RqUJzJfGAnaznvnfthyNj07o0OVWVbqh1JhWYiKFEGaFHj_-hi9Z1jd9uRSUAicLIU8M1lXetMR3N0_eurHW3TDmkKwPSPwak3oB0bYAX9jfjXVZT8Sv7-Th-Ay6Mg5w</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Czartowski, Jakub</creator><creator>Goyeneche, Dardo</creator><creator>Grassl, Markus</creator><creator>Życzkowski, Karol</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0653-3639</orcidid><orcidid>https://orcid.org/0000-0003-4062-833X</orcidid><orcidid>https://orcid.org/0000-0002-3720-5195</orcidid></search><sort><creationdate>20200306</creationdate><title>Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs</title><author>Czartowski, Jakub ; Goyeneche, Dardo ; Grassl, Markus ; Życzkowski, Karol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Construction methods</topic><topic>Density</topic><topic>Hilbert space</topic><topic>Information theory</topic><topic>Quadratic equations</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czartowski, Jakub</creatorcontrib><creatorcontrib>Goyeneche, Dardo</creatorcontrib><creatorcontrib>Grassl, Markus</creatorcontrib><creatorcontrib>Życzkowski, Karol</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czartowski, Jakub</au><au>Goyeneche, Dardo</au><au>Grassl, Markus</au><au>Życzkowski, Karol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-03-06</date><risdate>2020</risdate><volume>124</volume><issue>9</issue><spage>090503</spage><epage>090503</epage><pages>090503-090503</pages><artnum>090503</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32202887</pmid><doi>10.1103/PhysRevLett.124.090503</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0653-3639</orcidid><orcidid>https://orcid.org/0000-0003-4062-833X</orcidid><orcidid>https://orcid.org/0000-0002-3720-5195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-03, Vol.124 (9), p.090503-090503, Article 090503 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2382643453 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Construction methods Density Hilbert space Information theory Quadratic equations Qubits (quantum computing) |
title | Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoentangled%20Mutually%20Unbiased%20Bases,%20Symmetric%20Quantum%20Measurements,%20and%20Mixed-State%20Designs&rft.jtitle=Physical%20review%20letters&rft.au=Czartowski,%20Jakub&rft.date=2020-03-06&rft.volume=124&rft.issue=9&rft.spage=090503&rft.epage=090503&rft.pages=090503-090503&rft.artnum=090503&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.090503&rft_dat=%3Cproquest_cross%3E2388008935%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-a1340537a70ed1f4b9539c34190514dbfcb58cc490e22aa8e01475b6399da1943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388008935&rft_id=info:pmid/32202887&rfr_iscdi=true |