Loading…

Deep neural networks with a set of node-wise varying activation functions

In this study, we present deep neural networks with a set of node-wise varying activation functions. The feature-learning abilities of the nodes are affected by the selected activation functions, where the nodes with smaller indices become increasingly more sensitive during training. As a result, th...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2020-06, Vol.126, p.118-131
Main Authors: Jang, Jinhyeok, Cho, Hyunjoong, Kim, Jaehong, Lee, Jaeyeon, Yang, Seungjoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-6d69ae0af0149e98af457761060325aa11169122e42c568c5f2e35931fd6a873
cites cdi_FETCH-LOGICAL-c362t-6d69ae0af0149e98af457761060325aa11169122e42c568c5f2e35931fd6a873
container_end_page 131
container_issue
container_start_page 118
container_title Neural networks
container_volume 126
creator Jang, Jinhyeok
Cho, Hyunjoong
Kim, Jaehong
Lee, Jaeyeon
Yang, Seungjoon
description In this study, we present deep neural networks with a set of node-wise varying activation functions. The feature-learning abilities of the nodes are affected by the selected activation functions, where the nodes with smaller indices become increasingly more sensitive during training. As a result, the features learned by the nodes are sorted by the node indices in order of their importance such that more sensitive nodes are related to more important features. The proposed networks learn input features but also the importance of the features. Nodes with lower importance in the proposed networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validated the feature-sorting property of the proposed method using both shallow and deep networks as well as deep networks transferred from existing networks.
doi_str_mv 10.1016/j.neunet.2020.03.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382655338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608020300812</els_id><sourcerecordid>2382655338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6d69ae0af0149e98af457761060325aa11169122e42c568c5f2e35931fd6a873</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwBgh5ZEk4thPHWZAQ10qVWLpbxjkBlzQpttOKtydVCiPTf4b_ovMRcskgZcDkzSptsW8xphw4pCBSgOyITJkqyoQXih-TKahSJBIUTMhZCCsAkCoTp2QiOAehinxK5g-IGzo0edMMEned_wx05-IHNTRgpF1N267CZOcC0q3x3659p8ZGtzXRdS2t-9buj3BOTmrTBLw46Iwsnx6X9y_J4vV5fn-3SKyQPCaykqVBMDWwrMRSmTrLi0IykCB4bgxjTJaMc8y4zaWyec1R5KVgdSWNKsSMXI-1G9999RiiXrtgsWlMi10fNBeKyzwXQg3WbLRa34XgsdYb79bDC5qB3jPUKz0y1HuGGoQeGA6xq8NC_7bG6i_0C20w3I4GHN7cOvQ6WIetxcp5tFFXnft_4Qfd64OW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382655338</pqid></control><display><type>article</type><title>Deep neural networks with a set of node-wise varying activation functions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</creator><creatorcontrib>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</creatorcontrib><description>In this study, we present deep neural networks with a set of node-wise varying activation functions. The feature-learning abilities of the nodes are affected by the selected activation functions, where the nodes with smaller indices become increasingly more sensitive during training. As a result, the features learned by the nodes are sorted by the node indices in order of their importance such that more sensitive nodes are related to more important features. The proposed networks learn input features but also the importance of the features. Nodes with lower importance in the proposed networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validated the feature-sorting property of the proposed method using both shallow and deep networks as well as deep networks transferred from existing networks.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2020.03.004</identifier><identifier>PMID: 32203875</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Deep network ; Principal component analysis ; Pruning ; Varying activation</subject><ispartof>Neural networks, 2020-06, Vol.126, p.118-131</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-6d69ae0af0149e98af457761060325aa11169122e42c568c5f2e35931fd6a873</citedby><cites>FETCH-LOGICAL-c362t-6d69ae0af0149e98af457761060325aa11169122e42c568c5f2e35931fd6a873</cites><orcidid>0000-0002-6840-5026 ; 0000-0003-3832-4337 ; 0000-0001-9109-1582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Jinhyeok</creatorcontrib><creatorcontrib>Cho, Hyunjoong</creatorcontrib><creatorcontrib>Kim, Jaehong</creatorcontrib><creatorcontrib>Lee, Jaeyeon</creatorcontrib><creatorcontrib>Yang, Seungjoon</creatorcontrib><title>Deep neural networks with a set of node-wise varying activation functions</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this study, we present deep neural networks with a set of node-wise varying activation functions. The feature-learning abilities of the nodes are affected by the selected activation functions, where the nodes with smaller indices become increasingly more sensitive during training. As a result, the features learned by the nodes are sorted by the node indices in order of their importance such that more sensitive nodes are related to more important features. The proposed networks learn input features but also the importance of the features. Nodes with lower importance in the proposed networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validated the feature-sorting property of the proposed method using both shallow and deep networks as well as deep networks transferred from existing networks.</description><subject>Deep network</subject><subject>Principal component analysis</subject><subject>Pruning</subject><subject>Varying activation</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EoqXwBgh5ZEk4thPHWZAQ10qVWLpbxjkBlzQpttOKtydVCiPTf4b_ovMRcskgZcDkzSptsW8xphw4pCBSgOyITJkqyoQXih-TKahSJBIUTMhZCCsAkCoTp2QiOAehinxK5g-IGzo0edMMEned_wx05-IHNTRgpF1N267CZOcC0q3x3659p8ZGtzXRdS2t-9buj3BOTmrTBLw46Iwsnx6X9y_J4vV5fn-3SKyQPCaykqVBMDWwrMRSmTrLi0IykCB4bgxjTJaMc8y4zaWyec1R5KVgdSWNKsSMXI-1G9999RiiXrtgsWlMi10fNBeKyzwXQg3WbLRa34XgsdYb79bDC5qB3jPUKz0y1HuGGoQeGA6xq8NC_7bG6i_0C20w3I4GHN7cOvQ6WIetxcp5tFFXnft_4Qfd64OW</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Jang, Jinhyeok</creator><creator>Cho, Hyunjoong</creator><creator>Kim, Jaehong</creator><creator>Lee, Jaeyeon</creator><creator>Yang, Seungjoon</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6840-5026</orcidid><orcidid>https://orcid.org/0000-0003-3832-4337</orcidid><orcidid>https://orcid.org/0000-0001-9109-1582</orcidid></search><sort><creationdate>202006</creationdate><title>Deep neural networks with a set of node-wise varying activation functions</title><author>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6d69ae0af0149e98af457761060325aa11169122e42c568c5f2e35931fd6a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep network</topic><topic>Principal component analysis</topic><topic>Pruning</topic><topic>Varying activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Jinhyeok</creatorcontrib><creatorcontrib>Cho, Hyunjoong</creatorcontrib><creatorcontrib>Kim, Jaehong</creatorcontrib><creatorcontrib>Lee, Jaeyeon</creatorcontrib><creatorcontrib>Yang, Seungjoon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Jinhyeok</au><au>Cho, Hyunjoong</au><au>Kim, Jaehong</au><au>Lee, Jaeyeon</au><au>Yang, Seungjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep neural networks with a set of node-wise varying activation functions</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2020-06</date><risdate>2020</risdate><volume>126</volume><spage>118</spage><epage>131</epage><pages>118-131</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this study, we present deep neural networks with a set of node-wise varying activation functions. The feature-learning abilities of the nodes are affected by the selected activation functions, where the nodes with smaller indices become increasingly more sensitive during training. As a result, the features learned by the nodes are sorted by the node indices in order of their importance such that more sensitive nodes are related to more important features. The proposed networks learn input features but also the importance of the features. Nodes with lower importance in the proposed networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validated the feature-sorting property of the proposed method using both shallow and deep networks as well as deep networks transferred from existing networks.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>32203875</pmid><doi>10.1016/j.neunet.2020.03.004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6840-5026</orcidid><orcidid>https://orcid.org/0000-0003-3832-4337</orcidid><orcidid>https://orcid.org/0000-0001-9109-1582</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2020-06, Vol.126, p.118-131
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2382655338
source ScienceDirect Freedom Collection 2022-2024
subjects Deep network
Principal component analysis
Pruning
Varying activation
title Deep neural networks with a set of node-wise varying activation functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20neural%20networks%20with%20a%20set%20of%20node-wise%20varying%20activation%20functions&rft.jtitle=Neural%20networks&rft.au=Jang,%20Jinhyeok&rft.date=2020-06&rft.volume=126&rft.spage=118&rft.epage=131&rft.pages=118-131&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2020.03.004&rft_dat=%3Cproquest_cross%3E2382655338%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-6d69ae0af0149e98af457761060325aa11169122e42c568c5f2e35931fd6a873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2382655338&rft_id=info:pmid/32203875&rfr_iscdi=true