Loading…

Solution-processed double-layered hole transport layers for highly-efficient cadmium-free quantum-dot light-emitting diodes

The search for heavy-metal-free quantum-dot light-emitting diodes (QD-LEDs) has greatly intensified in the past few years because device performance still falls behind that of CdSe-based QD-LEDs. Apart from the effects of nanostructures of the emitting materials, the unbalanced charge injection and...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2020-03, Vol.28 (5), p.6134-6145
Main Authors: Chen, Fei, Wang, Li-Jin, Li, Xu, Deng, Zhen-Bo, Teng, Feng, Tang, Ai-Wei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The search for heavy-metal-free quantum-dot light-emitting diodes (QD-LEDs) has greatly intensified in the past few years because device performance still falls behind that of CdSe-based QD-LEDs. Apart from the effects of nanostructures of the emitting materials, the unbalanced charge injection and transport severely affects the performance of heavy-metal-free QD-LEDs. In this work, we presented solution-processed double hole transport layers (HTLs) for improving the device performance of heavy-metal-free Cu-In-Zn-S(CIZS)/ZnS-based QD-LEDs, in which N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)benzidine (TPD) as an interlayer was incorporated between the emitting layer and the HTL. Through optimizing the thickness of poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenyl-amine (TFB) and TPD layers, a maximum external quantum efficiency (η ) of 3.87% and a current efficiency of 9.20 cd A were achieved in the solution-processed QD-LEDs with double-layered TFB/TPD as the HTLs, which were higher than those of the devices with pristine TFB, TPD and TFB:TPD blended layers. The performance enhancement could be attributed to the synergistic effects of the reduction of the hole injection barrier, the increase of the hole mobility and suppressed charge transfer between the HTL and the emitting layer. Furthermore, the best η of 5.61% with a mean η of 4.44 ± 0.73% was realized in the Cu-In-Zn-S-based QD-LEDs by varying the annealing temperature of TPD layer due to the more balanced charge injection and transport as well as smooth surface of TPD layer.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.386276