Loading…
Arrays of individually controllable optical tweezers based on 3D-printed microlens arrays
We present a novel platform of optical tweezers which combines rapid prototyping of user-definable microlens arrays with spatial light modulation (SLM) for dynamical control of each associated tweezer spot. Applying femtosecond direct laser writing, we manufacture a microlens array of 97 lenslets ex...
Saved in:
Published in: | Optics express 2020-03, Vol.28 (6), p.8640-8645 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a novel platform of optical tweezers which combines rapid prototyping of user-definable microlens arrays with spatial light modulation (SLM) for dynamical control of each associated tweezer spot. Applying femtosecond direct laser writing, we manufacture a microlens array of 97 lenslets exhibiting quadratic and hexagonal packing and a transition region between the two. We use a digital micromirror device (DMD) to adapt the light field illuminating the individual lenslets and present a detailed characterization of the full optical system. In an unprecedented fashion, this novel platform combines the stability given by prefabricated solid optical elements, fast reengineering by rapid optical prototyping, DMD-based real-time control of each focal spot, and extensive scalability of the tweezer pattern. The accessible tweezer properties are adaptable within a wide range of parameters in a straightforward way. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.386243 |