Loading…
Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic Molecular Dynamics
Quasi-classical mapping Hamiltonian methods have recently emerged as a promising approach for simulating electronically nonadiabatic molecular dynamics. The classical-like dynamics of the overall system within these methods makes them computationally feasible, and they can be derived based on well-d...
Saved in:
Published in: | Journal of chemical theory and computation 2020-05, Vol.16 (5), p.2883-2895 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quasi-classical mapping Hamiltonian methods have recently emerged as a promising approach for simulating electronically nonadiabatic molecular dynamics. The classical-like dynamics of the overall system within these methods makes them computationally feasible, and they can be derived based on well-defined semiclassical approximations. However, the existence of a variety of different quasi-classical mapping Hamiltonian methods necessitates a systematic comparison of their respective advantages and limitations. Such a benchmark comparison is presented in this paper. The approaches compared include the Ehrenfest method, the symmetrical quasi-classical (SQC) method, and five variations of the linearized semiclassical (LSC) method, three of which employ a modified identity operator. The comparison is based on a number of popular nonadiabatic model systems; the spin-boson model, a Frenkel biexciton model, and Tully’s scattering models 1 and 2. The relative accuracy of the different methods is tested by comparing with quantum-mechanically exact results for the dynamics of the electronic populations and coherences. We find that LSC with the modified identity operator typically performs better than the Ehrenfest and standard LSC approaches. In comparison to SQC, these modified methods appear to be slightly more accurate for condensed phase problems, but for scattering models there is little distinction between them. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.9b01267 |