Loading…

Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis

Currently, the outbreak of COVID-19 is rapidly spreading especially in Wuhan city, and threatens 14 million people in central China. In the present study we applied the Moran index, a strong statistical tool, to the spatial panel to show that COVID-19 infection is spatially dependent and mainly spre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of infection in developing countries 2020-03, Vol.14 (3), p.246-253
Main Authors: Huang, Rui, Liu, Miao, Ding, Yongmei
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-e0cc5a03eb427771b1c4f5d6f434f5ca8f45a2f41b17c53908dbbdb759fb27233
cites
container_end_page 253
container_issue 3
container_start_page 246
container_title Journal of infection in developing countries
container_volume 14
creator Huang, Rui
Liu, Miao
Ding, Yongmei
description Currently, the outbreak of COVID-19 is rapidly spreading especially in Wuhan city, and threatens 14 million people in central China. In the present study we applied the Moran index, a strong statistical tool, to the spatial panel to show that COVID-19 infection is spatially dependent and mainly spread from Hubei Province in Central China to neighbouring areas. Logistic model was employed according to the trend of available data, which shows the difference between Hubei Province and outside of it. We also calculated the reproduction number R0 for the range of [2.23, 2.51] via SEIR model. The measures to reduce or prevent the virus spread should be implemented, and we expect our data-driven modeling analysis providing some insights to identify and prepare for the future virus control.
doi_str_mv 10.3855/jidc.12585
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385733070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560097650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e0cc5a03eb427771b1c4f5d6f434f5ca8f45a2f41b17c53908dbbdb759fb27233</originalsourceid><addsrcrecordid>eNpd0FtLwzAUwPEgipvTFz-ABHwRoTNNmqb1bdQrDPbg5bWkuWhGbyapsG9v6qaITyeQH4fDH4DTGM1JRunV2kgxjzHN6B6YxjnDEU4ztP_nPQFHzq0Rojmh8SGYEIwJRVkyBfqp597wOvKq6TvLayiN89ZUgzddCzsNi9Xr400U59C0sHg3LYe8ldB4B3urpBGju4YLKLnnkbTmU7Ww6aSqTfsWKK83zrhjcKB57dTJbs7Ay93tc_EQLVf3j8ViGYlwmI8UEoJyRFSVYMZYXMUi0VSmOiFhCp7phHKsk_DBBCU5ymRVyYrRXFeYYUJm4GK7t7fdx6CcLxvjhKpr3qpucCUOwRghiKFAz__RdTfYcG9QNEUoZykd1eVWCds5Z5Uue2sabjdljMqxfjnWL7_rB3y2WzlUjZK_9Cc3-QJQiH8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560097650</pqid></control><display><type>article</type><title>Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis</title><source>ProQuest - Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Huang, Rui ; Liu, Miao ; Ding, Yongmei</creator><creatorcontrib>Huang, Rui ; Liu, Miao ; Ding, Yongmei</creatorcontrib><description>Currently, the outbreak of COVID-19 is rapidly spreading especially in Wuhan city, and threatens 14 million people in central China. In the present study we applied the Moran index, a strong statistical tool, to the spatial panel to show that COVID-19 infection is spatially dependent and mainly spread from Hubei Province in Central China to neighbouring areas. Logistic model was employed according to the trend of available data, which shows the difference between Hubei Province and outside of it. We also calculated the reproduction number R0 for the range of [2.23, 2.51] via SEIR model. The measures to reduce or prevent the virus spread should be implemented, and we expect our data-driven modeling analysis providing some insights to identify and prepare for the future virus control.</description><identifier>ISSN: 1972-2680</identifier><identifier>ISSN: 2036-6590</identifier><identifier>EISSN: 1972-2680</identifier><identifier>DOI: 10.3855/jidc.12585</identifier><identifier>PMID: 32235084</identifier><language>eng</language><publisher>Italy: Journal of Infection in Developing Countries</publisher><subject>Betacoronavirus ; China - epidemiology ; Cities ; Coronavirus Infections - epidemiology ; Coronaviruses ; COVID-19 ; Disease Outbreaks ; Disease transmission ; Forecasting ; Humans ; Logistic Models ; Pandemics ; Pneumonia, Viral - epidemiology ; SARS-CoV-2 ; Spatio-Temporal Analysis</subject><ispartof>Journal of infection in developing countries, 2020-03, Vol.14 (3), p.246-253</ispartof><rights>Copyright (c) 2020 Rui Huang, Miao Liu, Yongmei Ding.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e0cc5a03eb427771b1c4f5d6f434f5ca8f45a2f41b17c53908dbbdb759fb27233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2560097650?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,38516,43895,44590</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32235084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Ding, Yongmei</creatorcontrib><title>Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis</title><title>Journal of infection in developing countries</title><addtitle>J Infect Dev Ctries</addtitle><description>Currently, the outbreak of COVID-19 is rapidly spreading especially in Wuhan city, and threatens 14 million people in central China. In the present study we applied the Moran index, a strong statistical tool, to the spatial panel to show that COVID-19 infection is spatially dependent and mainly spread from Hubei Province in Central China to neighbouring areas. Logistic model was employed according to the trend of available data, which shows the difference between Hubei Province and outside of it. We also calculated the reproduction number R0 for the range of [2.23, 2.51] via SEIR model. The measures to reduce or prevent the virus spread should be implemented, and we expect our data-driven modeling analysis providing some insights to identify and prepare for the future virus control.</description><subject>Betacoronavirus</subject><subject>China - epidemiology</subject><subject>Cities</subject><subject>Coronavirus Infections - epidemiology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease Outbreaks</subject><subject>Disease transmission</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Pandemics</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>SARS-CoV-2</subject><subject>Spatio-Temporal Analysis</subject><issn>1972-2680</issn><issn>2036-6590</issn><issn>1972-2680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpd0FtLwzAUwPEgipvTFz-ABHwRoTNNmqb1bdQrDPbg5bWkuWhGbyapsG9v6qaITyeQH4fDH4DTGM1JRunV2kgxjzHN6B6YxjnDEU4ztP_nPQFHzq0Rojmh8SGYEIwJRVkyBfqp597wOvKq6TvLayiN89ZUgzddCzsNi9Xr400U59C0sHg3LYe8ldB4B3urpBGju4YLKLnnkbTmU7Ww6aSqTfsWKK83zrhjcKB57dTJbs7Ay93tc_EQLVf3j8ViGYlwmI8UEoJyRFSVYMZYXMUi0VSmOiFhCp7phHKsk_DBBCU5ymRVyYrRXFeYYUJm4GK7t7fdx6CcLxvjhKpr3qpucCUOwRghiKFAz__RdTfYcG9QNEUoZykd1eVWCds5Z5Uue2sabjdljMqxfjnWL7_rB3y2WzlUjZK_9Cc3-QJQiH8o</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Huang, Rui</creator><creator>Liu, Miao</creator><creator>Ding, Yongmei</creator><general>Journal of Infection in Developing Countries</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8C1</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20200331</creationdate><title>Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis</title><author>Huang, Rui ; Liu, Miao ; Ding, Yongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e0cc5a03eb427771b1c4f5d6f434f5ca8f45a2f41b17c53908dbbdb759fb27233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Betacoronavirus</topic><topic>China - epidemiology</topic><topic>Cities</topic><topic>Coronavirus Infections - epidemiology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease Outbreaks</topic><topic>Disease transmission</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Pandemics</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>SARS-CoV-2</topic><topic>Spatio-Temporal Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Ding, Yongmei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Public Health Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of infection in developing countries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Rui</au><au>Liu, Miao</au><au>Ding, Yongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis</atitle><jtitle>Journal of infection in developing countries</jtitle><addtitle>J Infect Dev Ctries</addtitle><date>2020-03-31</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>246</spage><epage>253</epage><pages>246-253</pages><issn>1972-2680</issn><issn>2036-6590</issn><eissn>1972-2680</eissn><abstract>Currently, the outbreak of COVID-19 is rapidly spreading especially in Wuhan city, and threatens 14 million people in central China. In the present study we applied the Moran index, a strong statistical tool, to the spatial panel to show that COVID-19 infection is spatially dependent and mainly spread from Hubei Province in Central China to neighbouring areas. Logistic model was employed according to the trend of available data, which shows the difference between Hubei Province and outside of it. We also calculated the reproduction number R0 for the range of [2.23, 2.51] via SEIR model. The measures to reduce or prevent the virus spread should be implemented, and we expect our data-driven modeling analysis providing some insights to identify and prepare for the future virus control.</abstract><cop>Italy</cop><pub>Journal of Infection in Developing Countries</pub><pmid>32235084</pmid><doi>10.3855/jidc.12585</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1972-2680
ispartof Journal of infection in developing countries, 2020-03, Vol.14 (3), p.246-253
issn 1972-2680
2036-6590
1972-2680
language eng
recordid cdi_proquest_miscellaneous_2385733070
source ProQuest - Publicly Available Content Database; Coronavirus Research Database
subjects Betacoronavirus
China - epidemiology
Cities
Coronavirus Infections - epidemiology
Coronaviruses
COVID-19
Disease Outbreaks
Disease transmission
Forecasting
Humans
Logistic Models
Pandemics
Pneumonia, Viral - epidemiology
SARS-CoV-2
Spatio-Temporal Analysis
title Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial-temporal%20distribution%20of%20COVID-19%20in%20China%20and%20its%20prediction:%20A%20data-driven%20modeling%20analysis&rft.jtitle=Journal%20of%20infection%20in%20developing%20countries&rft.au=Huang,%20Rui&rft.date=2020-03-31&rft.volume=14&rft.issue=3&rft.spage=246&rft.epage=253&rft.pages=246-253&rft.issn=1972-2680&rft.eissn=1972-2680&rft_id=info:doi/10.3855/jidc.12585&rft_dat=%3Cproquest_cross%3E2560097650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-e0cc5a03eb427771b1c4f5d6f434f5ca8f45a2f41b17c53908dbbdb759fb27233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560097650&rft_id=info:pmid/32235084&rfr_iscdi=true