Loading…

MUC1 promotes glycolysis through inhibiting BRCA1 expression in pancreatic cancer

Enhanced glucose metabolism is one of the hallmarks of pancreatic cancer. MUC1, a transmembrane protein, is a global regulator of glucose metabolism and essential for progression of pancreatic cancer. To clarify the role of MUC1 in glucose metabolism, we knocked out MUC1 in Capan-1 and CFPAC-1 cells...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of natural medicines 2020-03, Vol.18 (3), p.178-185
Main Authors: FU, Xiao, TANG, Neng, XIE, Wei-Qi, MAO, Liang, QIU, Yu-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enhanced glucose metabolism is one of the hallmarks of pancreatic cancer. MUC1, a transmembrane protein, is a global regulator of glucose metabolism and essential for progression of pancreatic cancer. To clarify the role of MUC1 in glucose metabolism, we knocked out MUC1 in Capan-1 and CFPAC-1 cells. MUC1 knockout (KO) cells uptook less glucose and secreted less lactate with a much lower proliferating rate. The mRNA level of key enzymes in glycolysis also decreased significantly in MUC1 KO cells. We also observed increased expression of breast cancer type 1 susceptibility protein (BRCA1) in MUC1 KO cells. Since BRCA1 has a strong inhibitory effect on glycolysis, we want to know whether the decreased glucose metabolism in MUC1 KO cells is due to increased BRCA1 expression. We treated wild type (WT) and MUC1 KO cells with BRCA1 inhibitor. BRCA1 inhibition significantly enhanced glucose uptake and lactate secretion in both WT and MUC1 KO cells. Expression of key enzymes in glycolysis also elevated after BRCA1 inhibition. Elevated glucose metabolism is known to facilitate cancer cells to gain chemoresistance. We treated MUC1 KO cells with gemcitabine and FOLFIRINOX in vitro and in vivo. The results showed that MUC1 KO sensitized pancreatic cancer cells to chemotherapy both in vitro and in vivo. In conclusion, we demonstrated that MUC1 promotes glycolysis through inhibiting BRCA1 expression. MUC1 may be a therapeutic target in pancreatic cancer treatment.
ISSN:1875-5364
1875-5364
DOI:10.1016/S1875-5364(20)30019-4