Loading…
Electronic Health Records to Predict Gestational Diabetes Risk
Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Usin...
Saved in:
Published in: | Trends in pharmacological sciences (Regular ed.) 2020-05, Vol.41 (5), p.301-304 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093 |
container_end_page | 304 |
container_issue | 5 |
container_start_page | 301 |
container_title | Trends in pharmacological sciences (Regular ed.) |
container_volume | 41 |
creator | Mateen, Bilal A. David, Anna L. Denaxas, Spiros |
description | Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification. |
doi_str_mv | 10.1016/j.tips.2020.03.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2386429145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165614720300675</els_id><sourcerecordid>2386429145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQQBdRbK3-AQ-So5fE2Y9sEhBBam2FglL0vGx3J7g1beruVvDfm9Dq0dNc3jxmHiGXFDIKVN6ssui2IWPAIAOeAfAjMqRlwVNe8PyYDDsoTyUVxYCchbCCjuCMnpIBZ0wUuSiH5G7SoIm-3TiTzFA38T1ZoGm9DUlskxeP1pmYTDFEHV270U3y4PQSI4Zk4cLHOTmpdRPw4jBH5O1x8jqepfPn6dP4fp4aARDTWpYFFBYFF3UlNVhbl1QjltLqAkDnVkNdYUFBcw6aLQWWpay0lRVlNVR8RK733q1vP3fdNWrtgsGm0Rtsd0ExXkrBKiryDmV71Pg2BI-12nq31v5bUVB9N7VSfTfVd1PAVV9lRK4O_t1yjfZv5TdUB9zuAey-_HLoVTAON6br47uAyrbuP_8PoMt95A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386429145</pqid></control><display><type>article</type><title>Electronic Health Records to Predict Gestational Diabetes Risk</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Mateen, Bilal A. ; David, Anna L. ; Denaxas, Spiros</creator><creatorcontrib>Mateen, Bilal A. ; David, Anna L. ; Denaxas, Spiros</creatorcontrib><description>Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.</description><identifier>ISSN: 0165-6147</identifier><identifier>EISSN: 1873-3735</identifier><identifier>DOI: 10.1016/j.tips.2020.03.003</identifier><identifier>PMID: 32247548</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Diabetes, Gestational - diagnosis ; Diabetes, Gestational - epidemiology ; Electronic Health Records ; Female ; gestational diabetes mellitus ; Humans ; machine learning ; Mass Screening ; Pregnancy ; risk prediction</subject><ispartof>Trends in pharmacological sciences (Regular ed.), 2020-05, Vol.41 (5), p.301-304</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093</citedby><cites>FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32247548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mateen, Bilal A.</creatorcontrib><creatorcontrib>David, Anna L.</creatorcontrib><creatorcontrib>Denaxas, Spiros</creatorcontrib><title>Electronic Health Records to Predict Gestational Diabetes Risk</title><title>Trends in pharmacological sciences (Regular ed.)</title><addtitle>Trends Pharmacol Sci</addtitle><description>Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.</description><subject>Artificial Intelligence</subject><subject>Diabetes, Gestational - diagnosis</subject><subject>Diabetes, Gestational - epidemiology</subject><subject>Electronic Health Records</subject><subject>Female</subject><subject>gestational diabetes mellitus</subject><subject>Humans</subject><subject>machine learning</subject><subject>Mass Screening</subject><subject>Pregnancy</subject><subject>risk prediction</subject><issn>0165-6147</issn><issn>1873-3735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQQBdRbK3-AQ-So5fE2Y9sEhBBam2FglL0vGx3J7g1beruVvDfm9Dq0dNc3jxmHiGXFDIKVN6ssui2IWPAIAOeAfAjMqRlwVNe8PyYDDsoTyUVxYCchbCCjuCMnpIBZ0wUuSiH5G7SoIm-3TiTzFA38T1ZoGm9DUlskxeP1pmYTDFEHV270U3y4PQSI4Zk4cLHOTmpdRPw4jBH5O1x8jqepfPn6dP4fp4aARDTWpYFFBYFF3UlNVhbl1QjltLqAkDnVkNdYUFBcw6aLQWWpay0lRVlNVR8RK733q1vP3fdNWrtgsGm0Rtsd0ExXkrBKiryDmV71Pg2BI-12nq31v5bUVB9N7VSfTfVd1PAVV9lRK4O_t1yjfZv5TdUB9zuAey-_HLoVTAON6br47uAyrbuP_8PoMt95A</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Mateen, Bilal A.</creator><creator>David, Anna L.</creator><creator>Denaxas, Spiros</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202005</creationdate><title>Electronic Health Records to Predict Gestational Diabetes Risk</title><author>Mateen, Bilal A. ; David, Anna L. ; Denaxas, Spiros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Diabetes, Gestational - diagnosis</topic><topic>Diabetes, Gestational - epidemiology</topic><topic>Electronic Health Records</topic><topic>Female</topic><topic>gestational diabetes mellitus</topic><topic>Humans</topic><topic>machine learning</topic><topic>Mass Screening</topic><topic>Pregnancy</topic><topic>risk prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mateen, Bilal A.</creatorcontrib><creatorcontrib>David, Anna L.</creatorcontrib><creatorcontrib>Denaxas, Spiros</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in pharmacological sciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mateen, Bilal A.</au><au>David, Anna L.</au><au>Denaxas, Spiros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Health Records to Predict Gestational Diabetes Risk</atitle><jtitle>Trends in pharmacological sciences (Regular ed.)</jtitle><addtitle>Trends Pharmacol Sci</addtitle><date>2020-05</date><risdate>2020</risdate><volume>41</volume><issue>5</issue><spage>301</spage><epage>304</epage><pages>301-304</pages><issn>0165-6147</issn><eissn>1873-3735</eissn><abstract>Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32247548</pmid><doi>10.1016/j.tips.2020.03.003</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-6147 |
ispartof | Trends in pharmacological sciences (Regular ed.), 2020-05, Vol.41 (5), p.301-304 |
issn | 0165-6147 1873-3735 |
language | eng |
recordid | cdi_proquest_miscellaneous_2386429145 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Artificial Intelligence Diabetes, Gestational - diagnosis Diabetes, Gestational - epidemiology Electronic Health Records Female gestational diabetes mellitus Humans machine learning Mass Screening Pregnancy risk prediction |
title | Electronic Health Records to Predict Gestational Diabetes Risk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Health%20Records%20to%20Predict%20Gestational%20Diabetes%20Risk&rft.jtitle=Trends%20in%20pharmacological%20sciences%20(Regular%20ed.)&rft.au=Mateen,%20Bilal%20A.&rft.date=2020-05&rft.volume=41&rft.issue=5&rft.spage=301&rft.epage=304&rft.pages=301-304&rft.issn=0165-6147&rft.eissn=1873-3735&rft_id=info:doi/10.1016/j.tips.2020.03.003&rft_dat=%3Cproquest_cross%3E2386429145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386429145&rft_id=info:pmid/32247548&rfr_iscdi=true |