Loading…

Electronic Health Records to Predict Gestational Diabetes Risk

Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Usin...

Full description

Saved in:
Bibliographic Details
Published in:Trends in pharmacological sciences (Regular ed.) 2020-05, Vol.41 (5), p.301-304
Main Authors: Mateen, Bilal A., David, Anna L., Denaxas, Spiros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093
cites cdi_FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093
container_end_page 304
container_issue 5
container_start_page 301
container_title Trends in pharmacological sciences (Regular ed.)
container_volume 41
creator Mateen, Bilal A.
David, Anna L.
Denaxas, Spiros
description Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.
doi_str_mv 10.1016/j.tips.2020.03.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2386429145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165614720300675</els_id><sourcerecordid>2386429145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQQBdRbK3-AQ-So5fE2Y9sEhBBam2FglL0vGx3J7g1beruVvDfm9Dq0dNc3jxmHiGXFDIKVN6ssui2IWPAIAOeAfAjMqRlwVNe8PyYDDsoTyUVxYCchbCCjuCMnpIBZ0wUuSiH5G7SoIm-3TiTzFA38T1ZoGm9DUlskxeP1pmYTDFEHV270U3y4PQSI4Zk4cLHOTmpdRPw4jBH5O1x8jqepfPn6dP4fp4aARDTWpYFFBYFF3UlNVhbl1QjltLqAkDnVkNdYUFBcw6aLQWWpay0lRVlNVR8RK733q1vP3fdNWrtgsGm0Rtsd0ExXkrBKiryDmV71Pg2BI-12nq31v5bUVB9N7VSfTfVd1PAVV9lRK4O_t1yjfZv5TdUB9zuAey-_HLoVTAON6br47uAyrbuP_8PoMt95A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386429145</pqid></control><display><type>article</type><title>Electronic Health Records to Predict Gestational Diabetes Risk</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Mateen, Bilal A. ; David, Anna L. ; Denaxas, Spiros</creator><creatorcontrib>Mateen, Bilal A. ; David, Anna L. ; Denaxas, Spiros</creatorcontrib><description>Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.</description><identifier>ISSN: 0165-6147</identifier><identifier>EISSN: 1873-3735</identifier><identifier>DOI: 10.1016/j.tips.2020.03.003</identifier><identifier>PMID: 32247548</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Diabetes, Gestational - diagnosis ; Diabetes, Gestational - epidemiology ; Electronic Health Records ; Female ; gestational diabetes mellitus ; Humans ; machine learning ; Mass Screening ; Pregnancy ; risk prediction</subject><ispartof>Trends in pharmacological sciences (Regular ed.), 2020-05, Vol.41 (5), p.301-304</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093</citedby><cites>FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32247548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mateen, Bilal A.</creatorcontrib><creatorcontrib>David, Anna L.</creatorcontrib><creatorcontrib>Denaxas, Spiros</creatorcontrib><title>Electronic Health Records to Predict Gestational Diabetes Risk</title><title>Trends in pharmacological sciences (Regular ed.)</title><addtitle>Trends Pharmacol Sci</addtitle><description>Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.</description><subject>Artificial Intelligence</subject><subject>Diabetes, Gestational - diagnosis</subject><subject>Diabetes, Gestational - epidemiology</subject><subject>Electronic Health Records</subject><subject>Female</subject><subject>gestational diabetes mellitus</subject><subject>Humans</subject><subject>machine learning</subject><subject>Mass Screening</subject><subject>Pregnancy</subject><subject>risk prediction</subject><issn>0165-6147</issn><issn>1873-3735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQQBdRbK3-AQ-So5fE2Y9sEhBBam2FglL0vGx3J7g1beruVvDfm9Dq0dNc3jxmHiGXFDIKVN6ssui2IWPAIAOeAfAjMqRlwVNe8PyYDDsoTyUVxYCchbCCjuCMnpIBZ0wUuSiH5G7SoIm-3TiTzFA38T1ZoGm9DUlskxeP1pmYTDFEHV270U3y4PQSI4Zk4cLHOTmpdRPw4jBH5O1x8jqepfPn6dP4fp4aARDTWpYFFBYFF3UlNVhbl1QjltLqAkDnVkNdYUFBcw6aLQWWpay0lRVlNVR8RK733q1vP3fdNWrtgsGm0Rtsd0ExXkrBKiryDmV71Pg2BI-12nq31v5bUVB9N7VSfTfVd1PAVV9lRK4O_t1yjfZv5TdUB9zuAey-_HLoVTAON6br47uAyrbuP_8PoMt95A</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Mateen, Bilal A.</creator><creator>David, Anna L.</creator><creator>Denaxas, Spiros</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202005</creationdate><title>Electronic Health Records to Predict Gestational Diabetes Risk</title><author>Mateen, Bilal A. ; David, Anna L. ; Denaxas, Spiros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Diabetes, Gestational - diagnosis</topic><topic>Diabetes, Gestational - epidemiology</topic><topic>Electronic Health Records</topic><topic>Female</topic><topic>gestational diabetes mellitus</topic><topic>Humans</topic><topic>machine learning</topic><topic>Mass Screening</topic><topic>Pregnancy</topic><topic>risk prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mateen, Bilal A.</creatorcontrib><creatorcontrib>David, Anna L.</creatorcontrib><creatorcontrib>Denaxas, Spiros</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in pharmacological sciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mateen, Bilal A.</au><au>David, Anna L.</au><au>Denaxas, Spiros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Health Records to Predict Gestational Diabetes Risk</atitle><jtitle>Trends in pharmacological sciences (Regular ed.)</jtitle><addtitle>Trends Pharmacol Sci</addtitle><date>2020-05</date><risdate>2020</risdate><volume>41</volume><issue>5</issue><spage>301</spage><epage>304</epage><pages>301-304</pages><issn>0165-6147</issn><eissn>1873-3735</eissn><abstract>Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32247548</pmid><doi>10.1016/j.tips.2020.03.003</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-6147
ispartof Trends in pharmacological sciences (Regular ed.), 2020-05, Vol.41 (5), p.301-304
issn 0165-6147
1873-3735
language eng
recordid cdi_proquest_miscellaneous_2386429145
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Artificial Intelligence
Diabetes, Gestational - diagnosis
Diabetes, Gestational - epidemiology
Electronic Health Records
Female
gestational diabetes mellitus
Humans
machine learning
Mass Screening
Pregnancy
risk prediction
title Electronic Health Records to Predict Gestational Diabetes Risk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Health%20Records%20to%20Predict%20Gestational%20Diabetes%20Risk&rft.jtitle=Trends%20in%20pharmacological%20sciences%20(Regular%20ed.)&rft.au=Mateen,%20Bilal%20A.&rft.date=2020-05&rft.volume=41&rft.issue=5&rft.spage=301&rft.epage=304&rft.pages=301-304&rft.issn=0165-6147&rft.eissn=1873-3735&rft_id=info:doi/10.1016/j.tips.2020.03.003&rft_dat=%3Cproquest_cross%3E2386429145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-f68707de434f96a0ddf81aee86da700a5da0f9e710a330a2b4e8869ad6912f093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386429145&rft_id=info:pmid/32247548&rfr_iscdi=true