Loading…

A complete study of the lattices of fuzzy congruences and fuzzy normal subgroups

In this paper, we introduce the concepts of t- fuzzy congruences and t- fuzzy equivalences. Using these ideas, we investigate completely, on one hand, the lattice structures of the set of fuzzy equivalence relations on a group and the set of fuzzy congruences and, on the other hand, the lattice stru...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 1995, Vol.82 (3), p.197-218
Main Authors: Ajmal, Naseem, Thomas, K.V.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-3d9f738bc85db8e0e0834dacd67eba2efa9b494988dc9b23f1c6a332c349ebcf3
cites
container_end_page 218
container_issue 3
container_start_page 197
container_title Information sciences
container_volume 82
creator Ajmal, Naseem
Thomas, K.V.
description In this paper, we introduce the concepts of t- fuzzy congruences and t- fuzzy equivalences. Using these ideas, we investigate completely, on one hand, the lattice structures of the set of fuzzy equivalence relations on a group and the set of fuzzy congruences and, on the other hand, the lattice structures of the set of fuzzy subgroups and fuzzy normal subgroups. Our study reveals some finer and interesting facts about these lattices. It is proved, among other results, that the set Ct of all t- fuzzy congruences of a group G forms lattice, and also the set L n t of all those fuzzy normal subgroups, which assume the same value t at e the identity of G, forms a lattice. As an important result, we prove that the lattices C t and L n t are isomorphic. It is also shown that the lattices C t and L n t are modular. Moreover, we construct various important sublattices of the lattice C t and exhibit their relationship by lattice diagrams. In the process, we improve and unify many results of earlier authors on fuzzy congruences.
doi_str_mv 10.1016/0020-0255(94)00050-L
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23867810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002002559400050L</els_id><sourcerecordid>23867810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-3d9f738bc85db8e0e0834dacd67eba2efa9b494988dc9b23f1c6a332c349ebcf3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw89iOihmiZpm1wEWfyCgh70HNJkskb6sSapsPvrbd1lj56GGZ53hnkQOs_wTYaz4hZjglNM8vxKsGuMcY7T6gDNMl6StCAiO0SzPXKMTkL4GiFWFsUMvd0num9XDURIQhzMOultEj8haVSMTkOYejtsNuuR65Z-gG4aqs7spl3vW9UkYaiXvh9W4RQdWdUEONvVOfp4fHhfPKfV69PL4r5KNS1YTKkRtqS81jw3NQcMmFNmlDZFCbUiYJWomWCCc6NFTajNdKEoJZoyAbW2dI4ut3tXvv8eIETZuqChaVQH_RAkobwoeYZHkG1B7fsQPFi58q5Vfi0zLCd9cnIjJzdSMPmnT1Zj7GK3XwWtGutVp13YZ2nO85KTEbvbYjD--uPAy6Dd5Mg4DzpK07v_7_wCuKaFCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23867810</pqid></control><display><type>article</type><title>A complete study of the lattices of fuzzy congruences and fuzzy normal subgroups</title><source>ScienceDirect Journals</source><creator>Ajmal, Naseem ; Thomas, K.V.</creator><creatorcontrib>Ajmal, Naseem ; Thomas, K.V.</creatorcontrib><description>In this paper, we introduce the concepts of t- fuzzy congruences and t- fuzzy equivalences. Using these ideas, we investigate completely, on one hand, the lattice structures of the set of fuzzy equivalence relations on a group and the set of fuzzy congruences and, on the other hand, the lattice structures of the set of fuzzy subgroups and fuzzy normal subgroups. Our study reveals some finer and interesting facts about these lattices. It is proved, among other results, that the set Ct of all t- fuzzy congruences of a group G forms lattice, and also the set L n t of all those fuzzy normal subgroups, which assume the same value t at e the identity of G, forms a lattice. As an important result, we prove that the lattices C t and L n t are isomorphic. It is also shown that the lattices C t and L n t are modular. Moreover, we construct various important sublattices of the lattice C t and exhibit their relationship by lattice diagrams. In the process, we improve and unify many results of earlier authors on fuzzy congruences.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/0020-0255(94)00050-L</identifier><identifier>CODEN: ISIJBC</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Theoretical computing</subject><ispartof>Information sciences, 1995, Vol.82 (3), p.197-218</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-3d9f738bc85db8e0e0834dacd67eba2efa9b494988dc9b23f1c6a332c349ebcf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3585782$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ajmal, Naseem</creatorcontrib><creatorcontrib>Thomas, K.V.</creatorcontrib><title>A complete study of the lattices of fuzzy congruences and fuzzy normal subgroups</title><title>Information sciences</title><description>In this paper, we introduce the concepts of t- fuzzy congruences and t- fuzzy equivalences. Using these ideas, we investigate completely, on one hand, the lattice structures of the set of fuzzy equivalence relations on a group and the set of fuzzy congruences and, on the other hand, the lattice structures of the set of fuzzy subgroups and fuzzy normal subgroups. Our study reveals some finer and interesting facts about these lattices. It is proved, among other results, that the set Ct of all t- fuzzy congruences of a group G forms lattice, and also the set L n t of all those fuzzy normal subgroups, which assume the same value t at e the identity of G, forms a lattice. As an important result, we prove that the lattices C t and L n t are isomorphic. It is also shown that the lattices C t and L n t are modular. Moreover, we construct various important sublattices of the lattice C t and exhibit their relationship by lattice diagrams. In the process, we improve and unify many results of earlier authors on fuzzy congruences.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Theoretical computing</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw89iOihmiZpm1wEWfyCgh70HNJkskb6sSapsPvrbd1lj56GGZ53hnkQOs_wTYaz4hZjglNM8vxKsGuMcY7T6gDNMl6StCAiO0SzPXKMTkL4GiFWFsUMvd0num9XDURIQhzMOultEj8haVSMTkOYejtsNuuR65Z-gG4aqs7spl3vW9UkYaiXvh9W4RQdWdUEONvVOfp4fHhfPKfV69PL4r5KNS1YTKkRtqS81jw3NQcMmFNmlDZFCbUiYJWomWCCc6NFTajNdKEoJZoyAbW2dI4ut3tXvv8eIETZuqChaVQH_RAkobwoeYZHkG1B7fsQPFi58q5Vfi0zLCd9cnIjJzdSMPmnT1Zj7GK3XwWtGutVp13YZ2nO85KTEbvbYjD--uPAy6Dd5Mg4DzpK07v_7_wCuKaFCw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Ajmal, Naseem</creator><creator>Thomas, K.V.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>A complete study of the lattices of fuzzy congruences and fuzzy normal subgroups</title><author>Ajmal, Naseem ; Thomas, K.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-3d9f738bc85db8e0e0834dacd67eba2efa9b494988dc9b23f1c6a332c349ebcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajmal, Naseem</creatorcontrib><creatorcontrib>Thomas, K.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajmal, Naseem</au><au>Thomas, K.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A complete study of the lattices of fuzzy congruences and fuzzy normal subgroups</atitle><jtitle>Information sciences</jtitle><date>1995</date><risdate>1995</risdate><volume>82</volume><issue>3</issue><spage>197</spage><epage>218</epage><pages>197-218</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><coden>ISIJBC</coden><abstract>In this paper, we introduce the concepts of t- fuzzy congruences and t- fuzzy equivalences. Using these ideas, we investigate completely, on one hand, the lattice structures of the set of fuzzy equivalence relations on a group and the set of fuzzy congruences and, on the other hand, the lattice structures of the set of fuzzy subgroups and fuzzy normal subgroups. Our study reveals some finer and interesting facts about these lattices. It is proved, among other results, that the set Ct of all t- fuzzy congruences of a group G forms lattice, and also the set L n t of all those fuzzy normal subgroups, which assume the same value t at e the identity of G, forms a lattice. As an important result, we prove that the lattices C t and L n t are isomorphic. It is also shown that the lattices C t and L n t are modular. Moreover, we construct various important sublattices of the lattice C t and exhibit their relationship by lattice diagrams. In the process, we improve and unify many results of earlier authors on fuzzy congruences.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0020-0255(94)00050-L</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 1995, Vol.82 (3), p.197-218
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_23867810
source ScienceDirect Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Theoretical computing
title A complete study of the lattices of fuzzy congruences and fuzzy normal subgroups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20complete%20study%20of%20the%20lattices%20of%20fuzzy%20congruences%20and%20fuzzy%20normal%20subgroups&rft.jtitle=Information%20sciences&rft.au=Ajmal,%20Naseem&rft.date=1995&rft.volume=82&rft.issue=3&rft.spage=197&rft.epage=218&rft.pages=197-218&rft.issn=0020-0255&rft.eissn=1872-6291&rft.coden=ISIJBC&rft_id=info:doi/10.1016/0020-0255(94)00050-L&rft_dat=%3Cproquest_cross%3E23867810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-3d9f738bc85db8e0e0834dacd67eba2efa9b494988dc9b23f1c6a332c349ebcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=23867810&rft_id=info:pmid/&rfr_iscdi=true