Loading…

Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating

Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-04, Vol.32 (14), p.e1906319-n/a
Main Authors: Lan, Ruochen, Sun, Jian, Shen, Chen, Huang, Rui, Zhang, Zhongping, Zhang, Lanying, Wang, Ling, Yang, Huai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3
cites cdi_FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3
container_end_page n/a
container_issue 14
container_start_page e1906319
container_title Advanced materials (Weinheim)
container_volume 32
creator Lan, Ruochen
Sun, Jian
Shen, Chen
Huang, Rui
Zhang, Zhongping
Zhang, Lanying
Wang, Ling
Yang, Huai
description Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel‐inspired polydopamine (PDA) polymer layer on the surface of splay‐aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self‐oscillating movement mechanism can be attributed to the temperature oscillation at the PDA‐coated LCN film since it is alternatively exposed and sheltered to the NIR‐light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA‐coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR‐light‐actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices. Liquid crystalline network (LCN) film showing steady oscillation behavior driven by near‐infrared (NIR) light is prepared by selectively modifying the film with polydopamine coating, which makes the NIR‐light‐driven LCN oscillator designable and reprogrammable. It is found that the NIR light in focused sunlight is enough to actuate the oscillation, providing a new strategy to fabrication of solar power generation devices.
doi_str_mv 10.1002/adma.201906319
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387250224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387250224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3</originalsourceid><addsrcrecordid>eNqF0T1v1DAYB3ALgei1sDKiSCwsOR6_JLHH00Gh0tFWKsyR45fWxYmvdsLpNpbufEY-CY6uFImFycPz899-9EfoFYYlBiDvpO7lkgAWUFMsnqAFrgguGYjqKVqAoFUpasaP0HFKtwAgaqifoyNKgIPAYoHuz42Mv378PBtslNHo4vImjEFH990MxZXxNs-upjRKN-ThRVLOezm6MBTBFht3NzmdxTruM_E-o-LcjLsQvxWnzvfFzo03xWXONcldD3KcHwh-r8NW9jNehxw2XL9Az6z0ybx8OE_Q19MPX9afys3Fx7P1alMq2lBR8lo1lVVgMe8EMF5ZIpmCTjakUpxTyyjXHbac1CBBE82bSmjGmdWGdULRE_T2kLuN4W4yaWx7l5TJKw0mTKkllOcoIIRl-uYfehumOOTfzarmrCGszmp5UCqGlKKx7Ta6XsZ9i6GdC2rngtrHgvKF1w-xU9cb_cj_NJKBOICd82b_n7h29f7z6m_4b86poXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386847246</pqid></control><display><type>article</type><title>Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating</title><source>Wiley</source><creator>Lan, Ruochen ; Sun, Jian ; Shen, Chen ; Huang, Rui ; Zhang, Zhongping ; Zhang, Lanying ; Wang, Ling ; Yang, Huai</creator><creatorcontrib>Lan, Ruochen ; Sun, Jian ; Shen, Chen ; Huang, Rui ; Zhang, Zhongping ; Zhang, Lanying ; Wang, Ling ; Yang, Huai</creatorcontrib><description>Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel‐inspired polydopamine (PDA) polymer layer on the surface of splay‐aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self‐oscillating movement mechanism can be attributed to the temperature oscillation at the PDA‐coated LCN film since it is alternatively exposed and sheltered to the NIR‐light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA‐coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR‐light‐actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices. Liquid crystalline network (LCN) film showing steady oscillation behavior driven by near‐infrared (NIR) light is prepared by selectively modifying the film with polydopamine coating, which makes the NIR‐light‐driven LCN oscillator designable and reprogrammable. It is found that the NIR light in focused sunlight is enough to actuate the oscillation, providing a new strategy to fabrication of solar power generation devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201906319</identifier><identifier>PMID: 32080919</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomimetics ; Coating ; Crystal structure ; Crystallinity ; Film thickness ; Liquid crystals ; liquid‐crystalline networks ; Luminous intensity ; Materials science ; Near infrared radiation ; near‐infrared‐light ; Oscillators ; polydopamine coating ; programmable materials ; Remote control ; Solar power generation</subject><ispartof>Advanced materials (Weinheim), 2020-04, Vol.32 (14), p.e1906319-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3</citedby><cites>FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3</cites><orcidid>0000-0002-3773-6666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32080919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Ruochen</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Zhongping</creatorcontrib><creatorcontrib>Zhang, Lanying</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yang, Huai</creatorcontrib><title>Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel‐inspired polydopamine (PDA) polymer layer on the surface of splay‐aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self‐oscillating movement mechanism can be attributed to the temperature oscillation at the PDA‐coated LCN film since it is alternatively exposed and sheltered to the NIR‐light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA‐coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR‐light‐actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices. Liquid crystalline network (LCN) film showing steady oscillation behavior driven by near‐infrared (NIR) light is prepared by selectively modifying the film with polydopamine coating, which makes the NIR‐light‐driven LCN oscillator designable and reprogrammable. It is found that the NIR light in focused sunlight is enough to actuate the oscillation, providing a new strategy to fabrication of solar power generation devices.</description><subject>Biomimetics</subject><subject>Coating</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Film thickness</subject><subject>Liquid crystals</subject><subject>liquid‐crystalline networks</subject><subject>Luminous intensity</subject><subject>Materials science</subject><subject>Near infrared radiation</subject><subject>near‐infrared‐light</subject><subject>Oscillators</subject><subject>polydopamine coating</subject><subject>programmable materials</subject><subject>Remote control</subject><subject>Solar power generation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0T1v1DAYB3ALgei1sDKiSCwsOR6_JLHH00Gh0tFWKsyR45fWxYmvdsLpNpbufEY-CY6uFImFycPz899-9EfoFYYlBiDvpO7lkgAWUFMsnqAFrgguGYjqKVqAoFUpasaP0HFKtwAgaqifoyNKgIPAYoHuz42Mv378PBtslNHo4vImjEFH990MxZXxNs-upjRKN-ThRVLOezm6MBTBFht3NzmdxTruM_E-o-LcjLsQvxWnzvfFzo03xWXONcldD3KcHwh-r8NW9jNehxw2XL9Az6z0ybx8OE_Q19MPX9afys3Fx7P1alMq2lBR8lo1lVVgMe8EMF5ZIpmCTjakUpxTyyjXHbac1CBBE82bSmjGmdWGdULRE_T2kLuN4W4yaWx7l5TJKw0mTKkllOcoIIRl-uYfehumOOTfzarmrCGszmp5UCqGlKKx7Ta6XsZ9i6GdC2rngtrHgvKF1w-xU9cb_cj_NJKBOICd82b_n7h29f7z6m_4b86poXg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Lan, Ruochen</creator><creator>Sun, Jian</creator><creator>Shen, Chen</creator><creator>Huang, Rui</creator><creator>Zhang, Zhongping</creator><creator>Zhang, Lanying</creator><creator>Wang, Ling</creator><creator>Yang, Huai</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3773-6666</orcidid></search><sort><creationdate>20200401</creationdate><title>Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating</title><author>Lan, Ruochen ; Sun, Jian ; Shen, Chen ; Huang, Rui ; Zhang, Zhongping ; Zhang, Lanying ; Wang, Ling ; Yang, Huai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomimetics</topic><topic>Coating</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Film thickness</topic><topic>Liquid crystals</topic><topic>liquid‐crystalline networks</topic><topic>Luminous intensity</topic><topic>Materials science</topic><topic>Near infrared radiation</topic><topic>near‐infrared‐light</topic><topic>Oscillators</topic><topic>polydopamine coating</topic><topic>programmable materials</topic><topic>Remote control</topic><topic>Solar power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Ruochen</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Zhongping</creatorcontrib><creatorcontrib>Zhang, Lanying</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yang, Huai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Ruochen</au><au>Sun, Jian</au><au>Shen, Chen</au><au>Huang, Rui</au><au>Zhang, Zhongping</au><au>Zhang, Lanying</au><au>Wang, Ling</au><au>Yang, Huai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>32</volume><issue>14</issue><spage>e1906319</spage><epage>n/a</epage><pages>e1906319-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel‐inspired polydopamine (PDA) polymer layer on the surface of splay‐aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self‐oscillating movement mechanism can be attributed to the temperature oscillation at the PDA‐coated LCN film since it is alternatively exposed and sheltered to the NIR‐light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA‐coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR‐light‐actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices. Liquid crystalline network (LCN) film showing steady oscillation behavior driven by near‐infrared (NIR) light is prepared by selectively modifying the film with polydopamine coating, which makes the NIR‐light‐driven LCN oscillator designable and reprogrammable. It is found that the NIR light in focused sunlight is enough to actuate the oscillation, providing a new strategy to fabrication of solar power generation devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32080919</pmid><doi>10.1002/adma.201906319</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3773-6666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-04, Vol.32 (14), p.e1906319-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2387250224
source Wiley
subjects Biomimetics
Coating
Crystal structure
Crystallinity
Film thickness
Liquid crystals
liquid‐crystalline networks
Luminous intensity
Materials science
Near infrared radiation
near‐infrared‐light
Oscillators
polydopamine coating
programmable materials
Remote control
Solar power generation
title Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared%20Photodriven%20Self%E2%80%90Sustained%20Oscillation%20of%20Liquid%E2%80%90Crystalline%20Network%20Film%20with%20Predesignated%20Polydopamine%20Coating&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lan,%20Ruochen&rft.date=2020-04-01&rft.volume=32&rft.issue=14&rft.spage=e1906319&rft.epage=n/a&rft.pages=e1906319-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201906319&rft_dat=%3Cproquest_cross%3E2387250224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386847246&rft_id=info:pmid/32080919&rfr_iscdi=true