Loading…
Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating
Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating...
Saved in:
Published in: | Advanced materials (Weinheim) 2020-04, Vol.32 (14), p.e1906319-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3 |
container_end_page | n/a |
container_issue | 14 |
container_start_page | e1906319 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Lan, Ruochen Sun, Jian Shen, Chen Huang, Rui Zhang, Zhongping Zhang, Lanying Wang, Ling Yang, Huai |
description | Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel‐inspired polydopamine (PDA) polymer layer on the surface of splay‐aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self‐oscillating movement mechanism can be attributed to the temperature oscillation at the PDA‐coated LCN film since it is alternatively exposed and sheltered to the NIR‐light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA‐coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR‐light‐actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices.
Liquid crystalline network (LCN) film showing steady oscillation behavior driven by near‐infrared (NIR) light is prepared by selectively modifying the film with polydopamine coating, which makes the NIR‐light‐driven LCN oscillator designable and reprogrammable. It is found that the NIR light in focused sunlight is enough to actuate the oscillation, providing a new strategy to fabrication of solar power generation devices. |
doi_str_mv | 10.1002/adma.201906319 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387250224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387250224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3</originalsourceid><addsrcrecordid>eNqF0T1v1DAYB3ALgei1sDKiSCwsOR6_JLHH00Gh0tFWKsyR45fWxYmvdsLpNpbufEY-CY6uFImFycPz899-9EfoFYYlBiDvpO7lkgAWUFMsnqAFrgguGYjqKVqAoFUpasaP0HFKtwAgaqifoyNKgIPAYoHuz42Mv378PBtslNHo4vImjEFH990MxZXxNs-upjRKN-ThRVLOezm6MBTBFht3NzmdxTruM_E-o-LcjLsQvxWnzvfFzo03xWXONcldD3KcHwh-r8NW9jNehxw2XL9Az6z0ybx8OE_Q19MPX9afys3Fx7P1alMq2lBR8lo1lVVgMe8EMF5ZIpmCTjakUpxTyyjXHbac1CBBE82bSmjGmdWGdULRE_T2kLuN4W4yaWx7l5TJKw0mTKkllOcoIIRl-uYfehumOOTfzarmrCGszmp5UCqGlKKx7Ta6XsZ9i6GdC2rngtrHgvKF1w-xU9cb_cj_NJKBOICd82b_n7h29f7z6m_4b86poXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386847246</pqid></control><display><type>article</type><title>Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating</title><source>Wiley</source><creator>Lan, Ruochen ; Sun, Jian ; Shen, Chen ; Huang, Rui ; Zhang, Zhongping ; Zhang, Lanying ; Wang, Ling ; Yang, Huai</creator><creatorcontrib>Lan, Ruochen ; Sun, Jian ; Shen, Chen ; Huang, Rui ; Zhang, Zhongping ; Zhang, Lanying ; Wang, Ling ; Yang, Huai</creatorcontrib><description>Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel‐inspired polydopamine (PDA) polymer layer on the surface of splay‐aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self‐oscillating movement mechanism can be attributed to the temperature oscillation at the PDA‐coated LCN film since it is alternatively exposed and sheltered to the NIR‐light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA‐coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR‐light‐actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices.
Liquid crystalline network (LCN) film showing steady oscillation behavior driven by near‐infrared (NIR) light is prepared by selectively modifying the film with polydopamine coating, which makes the NIR‐light‐driven LCN oscillator designable and reprogrammable. It is found that the NIR light in focused sunlight is enough to actuate the oscillation, providing a new strategy to fabrication of solar power generation devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201906319</identifier><identifier>PMID: 32080919</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomimetics ; Coating ; Crystal structure ; Crystallinity ; Film thickness ; Liquid crystals ; liquid‐crystalline networks ; Luminous intensity ; Materials science ; Near infrared radiation ; near‐infrared‐light ; Oscillators ; polydopamine coating ; programmable materials ; Remote control ; Solar power generation</subject><ispartof>Advanced materials (Weinheim), 2020-04, Vol.32 (14), p.e1906319-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3</citedby><cites>FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3</cites><orcidid>0000-0002-3773-6666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32080919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Ruochen</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Zhongping</creatorcontrib><creatorcontrib>Zhang, Lanying</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yang, Huai</creatorcontrib><title>Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel‐inspired polydopamine (PDA) polymer layer on the surface of splay‐aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self‐oscillating movement mechanism can be attributed to the temperature oscillation at the PDA‐coated LCN film since it is alternatively exposed and sheltered to the NIR‐light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA‐coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR‐light‐actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices.
Liquid crystalline network (LCN) film showing steady oscillation behavior driven by near‐infrared (NIR) light is prepared by selectively modifying the film with polydopamine coating, which makes the NIR‐light‐driven LCN oscillator designable and reprogrammable. It is found that the NIR light in focused sunlight is enough to actuate the oscillation, providing a new strategy to fabrication of solar power generation devices.</description><subject>Biomimetics</subject><subject>Coating</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Film thickness</subject><subject>Liquid crystals</subject><subject>liquid‐crystalline networks</subject><subject>Luminous intensity</subject><subject>Materials science</subject><subject>Near infrared radiation</subject><subject>near‐infrared‐light</subject><subject>Oscillators</subject><subject>polydopamine coating</subject><subject>programmable materials</subject><subject>Remote control</subject><subject>Solar power generation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0T1v1DAYB3ALgei1sDKiSCwsOR6_JLHH00Gh0tFWKsyR45fWxYmvdsLpNpbufEY-CY6uFImFycPz899-9EfoFYYlBiDvpO7lkgAWUFMsnqAFrgguGYjqKVqAoFUpasaP0HFKtwAgaqifoyNKgIPAYoHuz42Mv378PBtslNHo4vImjEFH990MxZXxNs-upjRKN-ThRVLOezm6MBTBFht3NzmdxTruM_E-o-LcjLsQvxWnzvfFzo03xWXONcldD3KcHwh-r8NW9jNehxw2XL9Az6z0ybx8OE_Q19MPX9afys3Fx7P1alMq2lBR8lo1lVVgMe8EMF5ZIpmCTjakUpxTyyjXHbac1CBBE82bSmjGmdWGdULRE_T2kLuN4W4yaWx7l5TJKw0mTKkllOcoIIRl-uYfehumOOTfzarmrCGszmp5UCqGlKKx7Ta6XsZ9i6GdC2rngtrHgvKF1w-xU9cb_cj_NJKBOICd82b_n7h29f7z6m_4b86poXg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Lan, Ruochen</creator><creator>Sun, Jian</creator><creator>Shen, Chen</creator><creator>Huang, Rui</creator><creator>Zhang, Zhongping</creator><creator>Zhang, Lanying</creator><creator>Wang, Ling</creator><creator>Yang, Huai</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3773-6666</orcidid></search><sort><creationdate>20200401</creationdate><title>Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating</title><author>Lan, Ruochen ; Sun, Jian ; Shen, Chen ; Huang, Rui ; Zhang, Zhongping ; Zhang, Lanying ; Wang, Ling ; Yang, Huai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomimetics</topic><topic>Coating</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Film thickness</topic><topic>Liquid crystals</topic><topic>liquid‐crystalline networks</topic><topic>Luminous intensity</topic><topic>Materials science</topic><topic>Near infrared radiation</topic><topic>near‐infrared‐light</topic><topic>Oscillators</topic><topic>polydopamine coating</topic><topic>programmable materials</topic><topic>Remote control</topic><topic>Solar power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Ruochen</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Zhongping</creatorcontrib><creatorcontrib>Zhang, Lanying</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yang, Huai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Ruochen</au><au>Sun, Jian</au><au>Shen, Chen</au><au>Huang, Rui</au><au>Zhang, Zhongping</au><au>Zhang, Lanying</au><au>Wang, Ling</au><au>Yang, Huai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>32</volume><issue>14</issue><spage>e1906319</spage><epage>n/a</epage><pages>e1906319-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near‐infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel‐inspired polydopamine (PDA) polymer layer on the surface of splay‐aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self‐oscillating movement mechanism can be attributed to the temperature oscillation at the PDA‐coated LCN film since it is alternatively exposed and sheltered to the NIR‐light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA‐coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR‐light‐actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices.
Liquid crystalline network (LCN) film showing steady oscillation behavior driven by near‐infrared (NIR) light is prepared by selectively modifying the film with polydopamine coating, which makes the NIR‐light‐driven LCN oscillator designable and reprogrammable. It is found that the NIR light in focused sunlight is enough to actuate the oscillation, providing a new strategy to fabrication of solar power generation devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32080919</pmid><doi>10.1002/adma.201906319</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3773-6666</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-04, Vol.32 (14), p.e1906319-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2387250224 |
source | Wiley |
subjects | Biomimetics Coating Crystal structure Crystallinity Film thickness Liquid crystals liquid‐crystalline networks Luminous intensity Materials science Near infrared radiation near‐infrared‐light Oscillators polydopamine coating programmable materials Remote control Solar power generation |
title | Near‐Infrared Photodriven Self‐Sustained Oscillation of Liquid‐Crystalline Network Film with Predesignated Polydopamine Coating |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared%20Photodriven%20Self%E2%80%90Sustained%20Oscillation%20of%20Liquid%E2%80%90Crystalline%20Network%20Film%20with%20Predesignated%20Polydopamine%20Coating&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lan,%20Ruochen&rft.date=2020-04-01&rft.volume=32&rft.issue=14&rft.spage=e1906319&rft.epage=n/a&rft.pages=e1906319-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201906319&rft_dat=%3Cproquest_cross%3E2387250224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3739-86c75fc0f18b90485f2a4c0ba725c883f438db1f8260a0d2d8759d484fde4b9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386847246&rft_id=info:pmid/32080919&rfr_iscdi=true |