Loading…
BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity
In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties...
Saved in:
Published in: | Journal of chemical information and modeling 2020-06, Vol.60 (6), p.2915-2923 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663 |
container_end_page | 2923 |
container_issue | 6 |
container_start_page | 2915 |
container_title | Journal of chemical information and modeling |
container_volume | 60 |
creator | Palazzesi, Ferruccio Hermann, Markus R Grundl, Marc A Pautsch, Alexander Seeliger, Daniel Tautermann, Christofer S Weber, Alexander |
description | In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context. |
doi_str_mv | 10.1021/acs.jcim.9b01058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387253617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417001107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EoqWwM6FILCwpZzuxY7ZSFajUCgmBYLMc50JTpUmxk0r996Rqy8B0N7zv090j5JrCkAKj98b64dIWq6FKgUKcnJA-jSMVKgFfp8c9VqJHLrxfAnCuBDsnPc5YDILJPpk9Th0a2xQbfAhGwdzYRVFhOEPjqqL6DuZ1hmXQ1MHEN8XKNBiM640psWqCT-MWaLLgbZ8vmu0lOctN6fHqMAfk42nyPn4JZ6_P0_FoFlrOZBMylSUpRlLmVMoUeWRpngqIaE4jm2QM0UBsTAYyFpFSgLkEniqZZDJRkRB8QO72vWtX_7ToG70qvMWyNBXWrdeMJ5LFXFDZobf_0GXduqq7TrOISgBKYUfBnrKu9t5hrteu-9ZtNQW9M60703pnWh9Md5GbQ3GbrjD7CxzV8l_7jXmK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417001107</pqid></control><display><type>article</type><title>BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Palazzesi, Ferruccio ; Hermann, Markus R ; Grundl, Marc A ; Pautsch, Alexander ; Seeliger, Daniel ; Tautermann, Christofer S ; Weber, Alexander</creator><creatorcontrib>Palazzesi, Ferruccio ; Hermann, Markus R ; Grundl, Marc A ; Pautsch, Alexander ; Seeliger, Daniel ; Tautermann, Christofer S ; Weber, Alexander</creatorcontrib><description>In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.9b01058</identifier><identifier>PMID: 32250627</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Amino acids ; Covalence ; Covalent bonds ; Drugs ; Functional groups ; Machine learning ; Pharmaceutical industry ; Pharmaceuticals ; Reaction mechanisms ; Reactivity ; Warheads</subject><ispartof>Journal of chemical information and modeling, 2020-06, Vol.60 (6), p.2915-2923</ispartof><rights>Copyright American Chemical Society Jun 22, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663</citedby><cites>FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663</cites><orcidid>0000-0002-5832-3959 ; 0000-0003-1534-4781 ; 0000-0002-4119-6068 ; 0000-0002-6935-6940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32250627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palazzesi, Ferruccio</creatorcontrib><creatorcontrib>Hermann, Markus R</creatorcontrib><creatorcontrib>Grundl, Marc A</creatorcontrib><creatorcontrib>Pautsch, Alexander</creatorcontrib><creatorcontrib>Seeliger, Daniel</creatorcontrib><creatorcontrib>Tautermann, Christofer S</creatorcontrib><creatorcontrib>Weber, Alexander</creatorcontrib><title>BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Covalence</subject><subject>Covalent bonds</subject><subject>Drugs</subject><subject>Functional groups</subject><subject>Machine learning</subject><subject>Pharmaceutical industry</subject><subject>Pharmaceuticals</subject><subject>Reaction mechanisms</subject><subject>Reactivity</subject><subject>Warheads</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAQRi0EoqWwM6FILCwpZzuxY7ZSFajUCgmBYLMc50JTpUmxk0r996Rqy8B0N7zv090j5JrCkAKj98b64dIWq6FKgUKcnJA-jSMVKgFfp8c9VqJHLrxfAnCuBDsnPc5YDILJPpk9Th0a2xQbfAhGwdzYRVFhOEPjqqL6DuZ1hmXQ1MHEN8XKNBiM640psWqCT-MWaLLgbZ8vmu0lOctN6fHqMAfk42nyPn4JZ6_P0_FoFlrOZBMylSUpRlLmVMoUeWRpngqIaE4jm2QM0UBsTAYyFpFSgLkEniqZZDJRkRB8QO72vWtX_7ToG70qvMWyNBXWrdeMJ5LFXFDZobf_0GXduqq7TrOISgBKYUfBnrKu9t5hrteu-9ZtNQW9M60703pnWh9Md5GbQ3GbrjD7CxzV8l_7jXmK</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Palazzesi, Ferruccio</creator><creator>Hermann, Markus R</creator><creator>Grundl, Marc A</creator><creator>Pautsch, Alexander</creator><creator>Seeliger, Daniel</creator><creator>Tautermann, Christofer S</creator><creator>Weber, Alexander</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5832-3959</orcidid><orcidid>https://orcid.org/0000-0003-1534-4781</orcidid><orcidid>https://orcid.org/0000-0002-4119-6068</orcidid><orcidid>https://orcid.org/0000-0002-6935-6940</orcidid></search><sort><creationdate>20200622</creationdate><title>BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity</title><author>Palazzesi, Ferruccio ; Hermann, Markus R ; Grundl, Marc A ; Pautsch, Alexander ; Seeliger, Daniel ; Tautermann, Christofer S ; Weber, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Covalence</topic><topic>Covalent bonds</topic><topic>Drugs</topic><topic>Functional groups</topic><topic>Machine learning</topic><topic>Pharmaceutical industry</topic><topic>Pharmaceuticals</topic><topic>Reaction mechanisms</topic><topic>Reactivity</topic><topic>Warheads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palazzesi, Ferruccio</creatorcontrib><creatorcontrib>Hermann, Markus R</creatorcontrib><creatorcontrib>Grundl, Marc A</creatorcontrib><creatorcontrib>Pautsch, Alexander</creatorcontrib><creatorcontrib>Seeliger, Daniel</creatorcontrib><creatorcontrib>Tautermann, Christofer S</creatorcontrib><creatorcontrib>Weber, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palazzesi, Ferruccio</au><au>Hermann, Markus R</au><au>Grundl, Marc A</au><au>Pautsch, Alexander</au><au>Seeliger, Daniel</au><au>Tautermann, Christofer S</au><au>Weber, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>60</volume><issue>6</issue><spage>2915</spage><epage>2923</epage><pages>2915-2923</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32250627</pmid><doi>10.1021/acs.jcim.9b01058</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5832-3959</orcidid><orcidid>https://orcid.org/0000-0003-1534-4781</orcidid><orcidid>https://orcid.org/0000-0002-4119-6068</orcidid><orcidid>https://orcid.org/0000-0002-6935-6940</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2020-06, Vol.60 (6), p.2915-2923 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2387253617 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Algorithms Amino acids Covalence Covalent bonds Drugs Functional groups Machine learning Pharmaceutical industry Pharmaceuticals Reaction mechanisms Reactivity Warheads |
title | BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIreactive:%20A%20Machine-Learning%20Model%20to%20Estimate%20Covalent%20Warhead%20Reactivity&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Palazzesi,%20Ferruccio&rft.date=2020-06-22&rft.volume=60&rft.issue=6&rft.spage=2915&rft.epage=2923&rft.pages=2915-2923&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.9b01058&rft_dat=%3Cproquest_cross%3E2417001107%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417001107&rft_id=info:pmid/32250627&rfr_iscdi=true |