Loading…

BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity

In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling 2020-06, Vol.60 (6), p.2915-2923
Main Authors: Palazzesi, Ferruccio, Hermann, Markus R, Grundl, Marc A, Pautsch, Alexander, Seeliger, Daniel, Tautermann, Christofer S, Weber, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663
cites cdi_FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663
container_end_page 2923
container_issue 6
container_start_page 2915
container_title Journal of chemical information and modeling
container_volume 60
creator Palazzesi, Ferruccio
Hermann, Markus R
Grundl, Marc A
Pautsch, Alexander
Seeliger, Daniel
Tautermann, Christofer S
Weber, Alexander
description In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context.
doi_str_mv 10.1021/acs.jcim.9b01058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387253617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417001107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EoqWwM6FILCwpZzuxY7ZSFajUCgmBYLMc50JTpUmxk0r996Rqy8B0N7zv090j5JrCkAKj98b64dIWq6FKgUKcnJA-jSMVKgFfp8c9VqJHLrxfAnCuBDsnPc5YDILJPpk9Th0a2xQbfAhGwdzYRVFhOEPjqqL6DuZ1hmXQ1MHEN8XKNBiM640psWqCT-MWaLLgbZ8vmu0lOctN6fHqMAfk42nyPn4JZ6_P0_FoFlrOZBMylSUpRlLmVMoUeWRpngqIaE4jm2QM0UBsTAYyFpFSgLkEniqZZDJRkRB8QO72vWtX_7ToG70qvMWyNBXWrdeMJ5LFXFDZobf_0GXduqq7TrOISgBKYUfBnrKu9t5hrteu-9ZtNQW9M60703pnWh9Md5GbQ3GbrjD7CxzV8l_7jXmK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417001107</pqid></control><display><type>article</type><title>BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Palazzesi, Ferruccio ; Hermann, Markus R ; Grundl, Marc A ; Pautsch, Alexander ; Seeliger, Daniel ; Tautermann, Christofer S ; Weber, Alexander</creator><creatorcontrib>Palazzesi, Ferruccio ; Hermann, Markus R ; Grundl, Marc A ; Pautsch, Alexander ; Seeliger, Daniel ; Tautermann, Christofer S ; Weber, Alexander</creatorcontrib><description>In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.9b01058</identifier><identifier>PMID: 32250627</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Amino acids ; Covalence ; Covalent bonds ; Drugs ; Functional groups ; Machine learning ; Pharmaceutical industry ; Pharmaceuticals ; Reaction mechanisms ; Reactivity ; Warheads</subject><ispartof>Journal of chemical information and modeling, 2020-06, Vol.60 (6), p.2915-2923</ispartof><rights>Copyright American Chemical Society Jun 22, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663</citedby><cites>FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663</cites><orcidid>0000-0002-5832-3959 ; 0000-0003-1534-4781 ; 0000-0002-4119-6068 ; 0000-0002-6935-6940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32250627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palazzesi, Ferruccio</creatorcontrib><creatorcontrib>Hermann, Markus R</creatorcontrib><creatorcontrib>Grundl, Marc A</creatorcontrib><creatorcontrib>Pautsch, Alexander</creatorcontrib><creatorcontrib>Seeliger, Daniel</creatorcontrib><creatorcontrib>Tautermann, Christofer S</creatorcontrib><creatorcontrib>Weber, Alexander</creatorcontrib><title>BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Covalence</subject><subject>Covalent bonds</subject><subject>Drugs</subject><subject>Functional groups</subject><subject>Machine learning</subject><subject>Pharmaceutical industry</subject><subject>Pharmaceuticals</subject><subject>Reaction mechanisms</subject><subject>Reactivity</subject><subject>Warheads</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAQRi0EoqWwM6FILCwpZzuxY7ZSFajUCgmBYLMc50JTpUmxk0r996Rqy8B0N7zv090j5JrCkAKj98b64dIWq6FKgUKcnJA-jSMVKgFfp8c9VqJHLrxfAnCuBDsnPc5YDILJPpk9Th0a2xQbfAhGwdzYRVFhOEPjqqL6DuZ1hmXQ1MHEN8XKNBiM640psWqCT-MWaLLgbZ8vmu0lOctN6fHqMAfk42nyPn4JZ6_P0_FoFlrOZBMylSUpRlLmVMoUeWRpngqIaE4jm2QM0UBsTAYyFpFSgLkEniqZZDJRkRB8QO72vWtX_7ToG70qvMWyNBXWrdeMJ5LFXFDZobf_0GXduqq7TrOISgBKYUfBnrKu9t5hrteu-9ZtNQW9M60703pnWh9Md5GbQ3GbrjD7CxzV8l_7jXmK</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Palazzesi, Ferruccio</creator><creator>Hermann, Markus R</creator><creator>Grundl, Marc A</creator><creator>Pautsch, Alexander</creator><creator>Seeliger, Daniel</creator><creator>Tautermann, Christofer S</creator><creator>Weber, Alexander</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5832-3959</orcidid><orcidid>https://orcid.org/0000-0003-1534-4781</orcidid><orcidid>https://orcid.org/0000-0002-4119-6068</orcidid><orcidid>https://orcid.org/0000-0002-6935-6940</orcidid></search><sort><creationdate>20200622</creationdate><title>BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity</title><author>Palazzesi, Ferruccio ; Hermann, Markus R ; Grundl, Marc A ; Pautsch, Alexander ; Seeliger, Daniel ; Tautermann, Christofer S ; Weber, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Covalence</topic><topic>Covalent bonds</topic><topic>Drugs</topic><topic>Functional groups</topic><topic>Machine learning</topic><topic>Pharmaceutical industry</topic><topic>Pharmaceuticals</topic><topic>Reaction mechanisms</topic><topic>Reactivity</topic><topic>Warheads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palazzesi, Ferruccio</creatorcontrib><creatorcontrib>Hermann, Markus R</creatorcontrib><creatorcontrib>Grundl, Marc A</creatorcontrib><creatorcontrib>Pautsch, Alexander</creatorcontrib><creatorcontrib>Seeliger, Daniel</creatorcontrib><creatorcontrib>Tautermann, Christofer S</creatorcontrib><creatorcontrib>Weber, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palazzesi, Ferruccio</au><au>Hermann, Markus R</au><au>Grundl, Marc A</au><au>Pautsch, Alexander</au><au>Seeliger, Daniel</au><au>Tautermann, Christofer S</au><au>Weber, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>60</volume><issue>6</issue><spage>2915</spage><epage>2923</epage><pages>2915-2923</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32250627</pmid><doi>10.1021/acs.jcim.9b01058</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5832-3959</orcidid><orcidid>https://orcid.org/0000-0003-1534-4781</orcidid><orcidid>https://orcid.org/0000-0002-4119-6068</orcidid><orcidid>https://orcid.org/0000-0002-6935-6940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2020-06, Vol.60 (6), p.2915-2923
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2387253617
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Algorithms
Amino acids
Covalence
Covalent bonds
Drugs
Functional groups
Machine learning
Pharmaceutical industry
Pharmaceuticals
Reaction mechanisms
Reactivity
Warheads
title BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIreactive:%20A%20Machine-Learning%20Model%20to%20Estimate%20Covalent%20Warhead%20Reactivity&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Palazzesi,%20Ferruccio&rft.date=2020-06-22&rft.volume=60&rft.issue=6&rft.spage=2915&rft.epage=2923&rft.pages=2915-2923&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.9b01058&rft_dat=%3Cproquest_cross%3E2417001107%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-29d8be477f177be34c1fb6041f14c8d2eea05aad07564990ef703b978d7894663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417001107&rft_id=info:pmid/32250627&rfr_iscdi=true