Loading…
Targeted and NIR light-controlled delivery of nitric oxide combined with a platinum(iv) prodrug for enhanced anticancer therapy
This study reports a strategy of combining a Pt(iv) prodrug and a ruthenium nitrosyl (Ru-NO) donor into a single nanoplatform {N-GQDs@Ru-NO-Pt@FA} in which the platinum(iv) prodrug is conjugated onto a photoactivatable NO donor (Ru-NO) through a covalent bond and the nitric oxide-releasing platinum...
Saved in:
Published in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2019-03, Vol.7 (11), p.1867-1874 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study reports a strategy of combining a Pt(iv) prodrug and a ruthenium nitrosyl (Ru-NO) donor into a single nanoplatform {N-GQDs@Ru-NO-Pt@FA} in which the platinum(iv) prodrug is conjugated onto a photoactivatable NO donor (Ru-NO) through a covalent bond and the nitric oxide-releasing platinum prodrug and folate groups are decorated on N-doped graphene quantum dots (N-GQDs). After cellular uptake of the nanoplatform, the platinum(iv) prodrug was reduced to an active anti-cancer Pt(ii) species inside the cancerous cells, and simultaneously, near-infrared (NIR) light illumination induced the release of NO, accompanied by a prominent photothermal effect. This nanoplatform is capable of targeting intracellular co-delivery of Pt(ii) and NO under 808 nm NIR light irradiation, accompanied by photothermal therapy, thereby leading to a significant synergistic therapeutic effect. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/c8tb02743a |