Loading…

Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness

Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has rec...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2021-01, Vol.37 (1), p.16-25
Main Authors: Arias, Sandra L, Devorkin, Joshua, Civantos, Ana, Allain, Jean Paul
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603
cites cdi_FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603
container_end_page 25
container_issue 1
container_start_page 16
container_title Langmuir
container_volume 37
creator Arias, Sandra L
Devorkin, Joshua
Civantos, Ana
Allain, Jean Paul
description Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels. However, no clear consensus exists about the role of material stiffness in biofilm initiation and whether very compliant substrates are deleterious to bacterial cell adhesion. Here, by systematically tuning substrate topography and stiffness while keeping the surface free energy of polydimethylsiloxane substrates constant, we show that topographical patterns at the micron and submicron scale impart unique properties to the surface which are independent of the material stiffness. The current work provides a better understanding of the role of material stiffness in bacterial physiology and may constitute a cost-effective and simple strategy to reduce bacterial attachment and biofilm growth even in very compliant and hydrophobic polymers.
doi_str_mv 10.1021/acs.langmuir.0c00130
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387659047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387659047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk7_gUguvek8SfqxXs6x6WCgML0uaXJqI20zkxbcvzdjm3A-4PC-53AeQu4ZTBlw9iSVnzay-2oH46agAJiACzJmCYcomfHskowhi0WUxakYkRvvvwEgF3F-TUaC8yRJYz4m3dKrGp1RtZFU2cbQua7RG9tR2Wn6bGxlmpaurGtlf5iGeLfNXpsW-3rfeNPYX9khlQ7putO4w1C6ntqKbofS9072SLe9qaoOvb8lV5VsPN6d-oR8rpYfi9do8_ayXsw3kRKJ6KMSpOQotcgg07moyoTzEoUuYyUYAw1sJmIQEtM042KWp3nIsirDgyjTFMSEPB737pz9GdD3RWu8wiYAQzv4IpiyNMkhzoI0PkqVs947rIqdM610-4JBcSBdBNLFmXRxIh1sD6cLQ9mi_jed0Yo_yol-9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387659047</pqid></control><display><type>article</type><title>Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Arias, Sandra L ; Devorkin, Joshua ; Civantos, Ana ; Allain, Jean Paul</creator><creatorcontrib>Arias, Sandra L ; Devorkin, Joshua ; Civantos, Ana ; Allain, Jean Paul</creatorcontrib><description>Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels. However, no clear consensus exists about the role of material stiffness in biofilm initiation and whether very compliant substrates are deleterious to bacterial cell adhesion. Here, by systematically tuning substrate topography and stiffness while keeping the surface free energy of polydimethylsiloxane substrates constant, we show that topographical patterns at the micron and submicron scale impart unique properties to the surface which are independent of the material stiffness. The current work provides a better understanding of the role of material stiffness in bacterial physiology and may constitute a cost-effective and simple strategy to reduce bacterial attachment and biofilm growth even in very compliant and hydrophobic polymers.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c00130</identifier><identifier>PMID: 32255642</identifier><language>eng</language><publisher>United States</publisher><ispartof>Langmuir, 2021-01, Vol.37 (1), p.16-25</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603</citedby><cites>FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603</cites><orcidid>0000-0001-9073-374X ; 0000-0002-5349-7183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32255642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arias, Sandra L</creatorcontrib><creatorcontrib>Devorkin, Joshua</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><title>Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels. However, no clear consensus exists about the role of material stiffness in biofilm initiation and whether very compliant substrates are deleterious to bacterial cell adhesion. Here, by systematically tuning substrate topography and stiffness while keeping the surface free energy of polydimethylsiloxane substrates constant, we show that topographical patterns at the micron and submicron scale impart unique properties to the surface which are independent of the material stiffness. The current work provides a better understanding of the role of material stiffness in bacterial physiology and may constitute a cost-effective and simple strategy to reduce bacterial attachment and biofilm growth even in very compliant and hydrophobic polymers.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk7_gUguvek8SfqxXs6x6WCgML0uaXJqI20zkxbcvzdjm3A-4PC-53AeQu4ZTBlw9iSVnzay-2oH46agAJiACzJmCYcomfHskowhi0WUxakYkRvvvwEgF3F-TUaC8yRJYz4m3dKrGp1RtZFU2cbQua7RG9tR2Wn6bGxlmpaurGtlf5iGeLfNXpsW-3rfeNPYX9khlQ7putO4w1C6ntqKbofS9072SLe9qaoOvb8lV5VsPN6d-oR8rpYfi9do8_ayXsw3kRKJ6KMSpOQotcgg07moyoTzEoUuYyUYAw1sJmIQEtM042KWp3nIsirDgyjTFMSEPB737pz9GdD3RWu8wiYAQzv4IpiyNMkhzoI0PkqVs947rIqdM610-4JBcSBdBNLFmXRxIh1sD6cLQ9mi_jed0Yo_yol-9A</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Arias, Sandra L</creator><creator>Devorkin, Joshua</creator><creator>Civantos, Ana</creator><creator>Allain, Jean Paul</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9073-374X</orcidid><orcidid>https://orcid.org/0000-0002-5349-7183</orcidid></search><sort><creationdate>20210112</creationdate><title>Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness</title><author>Arias, Sandra L ; Devorkin, Joshua ; Civantos, Ana ; Allain, Jean Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, Sandra L</creatorcontrib><creatorcontrib>Devorkin, Joshua</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Sandra L</au><au>Devorkin, Joshua</au><au>Civantos, Ana</au><au>Allain, Jean Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2021-01-12</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>16</spage><epage>25</epage><pages>16-25</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels. However, no clear consensus exists about the role of material stiffness in biofilm initiation and whether very compliant substrates are deleterious to bacterial cell adhesion. Here, by systematically tuning substrate topography and stiffness while keeping the surface free energy of polydimethylsiloxane substrates constant, we show that topographical patterns at the micron and submicron scale impart unique properties to the surface which are independent of the material stiffness. The current work provides a better understanding of the role of material stiffness in bacterial physiology and may constitute a cost-effective and simple strategy to reduce bacterial attachment and biofilm growth even in very compliant and hydrophobic polymers.</abstract><cop>United States</cop><pmid>32255642</pmid><doi>10.1021/acs.langmuir.0c00130</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9073-374X</orcidid><orcidid>https://orcid.org/0000-0002-5349-7183</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2021-01, Vol.37 (1), p.16-25
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2387659047
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Escherichia%20coli%20Adhesion%20and%20Biofilm%20Formation%20on%20Polydimethylsiloxane%20are%20Independent%20of%20Substrate%20Stiffness&rft.jtitle=Langmuir&rft.au=Arias,%20Sandra%20L&rft.date=2021-01-12&rft.volume=37&rft.issue=1&rft.spage=16&rft.epage=25&rft.pages=16-25&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c00130&rft_dat=%3Cproquest_cross%3E2387659047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387659047&rft_id=info:pmid/32255642&rfr_iscdi=true