Loading…
Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness
Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has rec...
Saved in:
Published in: | Langmuir 2021-01, Vol.37 (1), p.16-25 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603 |
container_end_page | 25 |
container_issue | 1 |
container_start_page | 16 |
container_title | Langmuir |
container_volume | 37 |
creator | Arias, Sandra L Devorkin, Joshua Civantos, Ana Allain, Jean Paul |
description | Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels. However, no clear consensus exists about the role of material stiffness in biofilm initiation and whether very compliant substrates are deleterious to bacterial cell adhesion. Here, by systematically tuning substrate topography and stiffness while keeping the surface free energy of polydimethylsiloxane substrates constant, we show that topographical patterns at the micron and submicron scale impart unique properties to the surface which are independent of the material stiffness. The current work provides a better understanding of the role of material stiffness in bacterial physiology and may constitute a cost-effective and simple strategy to reduce bacterial attachment and biofilm growth even in very compliant and hydrophobic polymers. |
doi_str_mv | 10.1021/acs.langmuir.0c00130 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387659047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387659047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk7_gUguvek8SfqxXs6x6WCgML0uaXJqI20zkxbcvzdjm3A-4PC-53AeQu4ZTBlw9iSVnzay-2oH46agAJiACzJmCYcomfHskowhi0WUxakYkRvvvwEgF3F-TUaC8yRJYz4m3dKrGp1RtZFU2cbQua7RG9tR2Wn6bGxlmpaurGtlf5iGeLfNXpsW-3rfeNPYX9khlQ7putO4w1C6ntqKbofS9072SLe9qaoOvb8lV5VsPN6d-oR8rpYfi9do8_ayXsw3kRKJ6KMSpOQotcgg07moyoTzEoUuYyUYAw1sJmIQEtM042KWp3nIsirDgyjTFMSEPB737pz9GdD3RWu8wiYAQzv4IpiyNMkhzoI0PkqVs947rIqdM610-4JBcSBdBNLFmXRxIh1sD6cLQ9mi_jed0Yo_yol-9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387659047</pqid></control><display><type>article</type><title>Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Arias, Sandra L ; Devorkin, Joshua ; Civantos, Ana ; Allain, Jean Paul</creator><creatorcontrib>Arias, Sandra L ; Devorkin, Joshua ; Civantos, Ana ; Allain, Jean Paul</creatorcontrib><description>Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels. However, no clear consensus exists about the role of material stiffness in biofilm initiation and whether very compliant substrates are deleterious to bacterial cell adhesion. Here, by systematically tuning substrate topography and stiffness while keeping the surface free energy of polydimethylsiloxane substrates constant, we show that topographical patterns at the micron and submicron scale impart unique properties to the surface which are independent of the material stiffness. The current work provides a better understanding of the role of material stiffness in bacterial physiology and may constitute a cost-effective and simple strategy to reduce bacterial attachment and biofilm growth even in very compliant and hydrophobic polymers.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c00130</identifier><identifier>PMID: 32255642</identifier><language>eng</language><publisher>United States</publisher><ispartof>Langmuir, 2021-01, Vol.37 (1), p.16-25</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603</citedby><cites>FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603</cites><orcidid>0000-0001-9073-374X ; 0000-0002-5349-7183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32255642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arias, Sandra L</creatorcontrib><creatorcontrib>Devorkin, Joshua</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><title>Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels. However, no clear consensus exists about the role of material stiffness in biofilm initiation and whether very compliant substrates are deleterious to bacterial cell adhesion. Here, by systematically tuning substrate topography and stiffness while keeping the surface free energy of polydimethylsiloxane substrates constant, we show that topographical patterns at the micron and submicron scale impart unique properties to the surface which are independent of the material stiffness. The current work provides a better understanding of the role of material stiffness in bacterial physiology and may constitute a cost-effective and simple strategy to reduce bacterial attachment and biofilm growth even in very compliant and hydrophobic polymers.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk7_gUguvek8SfqxXs6x6WCgML0uaXJqI20zkxbcvzdjm3A-4PC-53AeQu4ZTBlw9iSVnzay-2oH46agAJiACzJmCYcomfHskowhi0WUxakYkRvvvwEgF3F-TUaC8yRJYz4m3dKrGp1RtZFU2cbQua7RG9tR2Wn6bGxlmpaurGtlf5iGeLfNXpsW-3rfeNPYX9khlQ7putO4w1C6ntqKbofS9072SLe9qaoOvb8lV5VsPN6d-oR8rpYfi9do8_ayXsw3kRKJ6KMSpOQotcgg07moyoTzEoUuYyUYAw1sJmIQEtM042KWp3nIsirDgyjTFMSEPB737pz9GdD3RWu8wiYAQzv4IpiyNMkhzoI0PkqVs947rIqdM610-4JBcSBdBNLFmXRxIh1sD6cLQ9mi_jed0Yo_yol-9A</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Arias, Sandra L</creator><creator>Devorkin, Joshua</creator><creator>Civantos, Ana</creator><creator>Allain, Jean Paul</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9073-374X</orcidid><orcidid>https://orcid.org/0000-0002-5349-7183</orcidid></search><sort><creationdate>20210112</creationdate><title>Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness</title><author>Arias, Sandra L ; Devorkin, Joshua ; Civantos, Ana ; Allain, Jean Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, Sandra L</creatorcontrib><creatorcontrib>Devorkin, Joshua</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Sandra L</au><au>Devorkin, Joshua</au><au>Civantos, Ana</au><au>Allain, Jean Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2021-01-12</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>16</spage><epage>25</epage><pages>16-25</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels. However, no clear consensus exists about the role of material stiffness in biofilm initiation and whether very compliant substrates are deleterious to bacterial cell adhesion. Here, by systematically tuning substrate topography and stiffness while keeping the surface free energy of polydimethylsiloxane substrates constant, we show that topographical patterns at the micron and submicron scale impart unique properties to the surface which are independent of the material stiffness. The current work provides a better understanding of the role of material stiffness in bacterial physiology and may constitute a cost-effective and simple strategy to reduce bacterial attachment and biofilm growth even in very compliant and hydrophobic polymers.</abstract><cop>United States</cop><pmid>32255642</pmid><doi>10.1021/acs.langmuir.0c00130</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9073-374X</orcidid><orcidid>https://orcid.org/0000-0002-5349-7183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2021-01, Vol.37 (1), p.16-25 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_2387659047 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Escherichia%20coli%20Adhesion%20and%20Biofilm%20Formation%20on%20Polydimethylsiloxane%20are%20Independent%20of%20Substrate%20Stiffness&rft.jtitle=Langmuir&rft.au=Arias,%20Sandra%20L&rft.date=2021-01-12&rft.volume=37&rft.issue=1&rft.spage=16&rft.epage=25&rft.pages=16-25&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c00130&rft_dat=%3Cproquest_cross%3E2387659047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-b0aa2ead3707d93fb522be3db4c3110d0183403ae667238969896bfb009ea6603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387659047&rft_id=info:pmid/32255642&rfr_iscdi=true |