Loading…
Metal Nanoparticle Exsolution on a Perovskite Stannate Support with High Electrical Conductivity
In situ exsolution of metal nanoparticles (NPs) is emerging as an alternative technique to deliver thermally stable and evenly dispersed metal NPs, which exhibit excellent adhesion with conducting perovskite oxide supports. Here we provide the first demonstration that Ni metal NPs with high areal de...
Saved in:
Published in: | Nano letters 2020-05, Vol.20 (5), p.3538-3544 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In situ exsolution of metal nanoparticles (NPs) is emerging as an alternative technique to deliver thermally stable and evenly dispersed metal NPs, which exhibit excellent adhesion with conducting perovskite oxide supports. Here we provide the first demonstration that Ni metal NPs with high areal density (∼175 μm–2) and fine size (∼38.65 nm) are exsolved from an A-site-deficient perovskite stannate support (La0.2Ba0.7Sn0.9Ni0.1O3−δ (LBSNO)). The NPs are strongly anchored and impart coking resistance, and the Ni-exsolved stannates show exceptionally high electrical conductivity (∼700 S·cm–1). The excellent conductivity is attributed to conduction between delocalized Sn 5s orbitals along with structural improvement toward ABO3 stoichiometry in the stannate support. We also reveal that experimental conditions with strong interaction must be optimized to obtain Ni exsolution without degrading the perovskite stannate framework. Our finding suggests a unique process to induce the formation of metal NPs embedded in stannate with excellent electrical properties. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.0c00488 |