Loading…

Fuzzy Kohonen clustering networks

The authors propose a fuzzy Kohonen clustering network which integrates the fuzzy c-means (FCM) model into the learning rate and updating strategies of the Kohonen network. This yields an optimization problem related to FCM, and the numerical results show improved convergence as well as reduced labe...

Full description

Saved in:
Bibliographic Details
Main Authors: Bezdek, J.C., Tsao, E.C.-K., Pal, N.R.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The authors propose a fuzzy Kohonen clustering network which integrates the fuzzy c-means (FCM) model into the learning rate and updating strategies of the Kohonen network. This yields an optimization problem related to FCM, and the numerical results show improved convergence as well as reduced labeling errors. It is proved that the proposed scheme is equivalent to the c-means algorithms. The new method can be viewed as a Kohonen type of FCM, but it is self-organizing, since the size of the update neighborhood and the learning rate in the competitive layer are automatically adjusted during learning. Anderson's IRIS data were used to illustrate this method. The results are compared with the standard Kohonen approach.< >
DOI:10.1109/FUZZY.1992.258797