Loading…

Dihydrogen Bond Interaction Induced Separation of Hexane Isomers by Self-Assembled Carborane Metallacycles

Herein, we describe how to utilize dihydrogen bond interactions to achieve alkane recognition and hexane isomer separation. A series of metallacycles based on carborane backbones are presented herein, revealing interdependent B–Hδ−···Hδ+–C proton–hydride interactions. The metallacycles take advantag...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2020-05, Vol.142 (18), p.8532-8538
Main Authors: Cui, Peng-Fei, Lin, Yue-Jian, Li, Zhen-Hua, Jin, Guo-Xin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, we describe how to utilize dihydrogen bond interactions to achieve alkane recognition and hexane isomer separation. A series of metallacycles based on carborane backbones are presented herein, revealing interdependent B–Hδ−···Hδ+–C proton–hydride interactions. The metallacycles take advantage of these dihydrogen bond interactions for the separation of hexane isomers. We show that the metallacycle 3a, bearing 1,4-di­(4-pyridyl)­benzene (DPB), can produce n-hexane with a purity of >99% in a single adsorption–desorption cycle from an equimolar mixture of all five isomers of hexane. The isomers 2-methylpentane and 3-methylpentane can be selectively absorbed by metallacycle 4a, which bears 1,2-di­(4-pyridyl)­ethylene (DPE). The size of the metallacycle, C–H···π interactions, and particularly B–Hδ−···Hδ+–C interactions are the main forces governing the extent of hexane recognition. This work provides a promising principle for the design of supramolecular coordination complexes (SCCs) for the separation of alkanes.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c03176