Loading…
Metal Coordination Sphere Deformation Induced Highly Stokes‐Shifted, Ultra Broadband Emission in 2D Hybrid Lead‐Bromide Perovskites and Investigation of Its Origin
Published studies of layered (2D) (100)‐oriented hybrid lead‐bromide perovskites evidence a correlation between increased inter‐octahedral (Pb‐Br‐Pb) distortions and the appearance of broadband white light emission. However, the impact of distortions within their constituent [PbBr6]4− octahedra has...
Saved in:
Published in: | Angewandte Chemie International Edition 2020-06, Vol.59 (27), p.10791-10796 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Published studies of layered (2D) (100)‐oriented hybrid lead‐bromide perovskites evidence a correlation between increased inter‐octahedral (Pb‐Br‐Pb) distortions and the appearance of broadband white light emission. However, the impact of distortions within their constituent [PbBr6]4− octahedra has yet to be assessed. Herein, we report two new (100)‐oriented 2D Pb‐Br perovskites, whose structures display unusually high intra‐octahedral distortions, whilst retaining minimal inter‐octahedral distortions. Using a combination of temperature‐dependent, power‐dependent and time‐resolved photoluminescence spectroscopic measurements, we show that increased intra‐octahedral distortion induces exciton localization processes and leads to formation of multiple photoinduced emissive colour centres. Ultimately, this leads to highly Stokes‐shifted, ultrabroad white light emission at room temperature.
2D perovskite white‐light emitters: Asymmetric pyridinium‐ and piperidinium‐based cations were used to template 2D hybrid lead‐bromide perovskites with unusually high intra‐octahedral distortions. This synthetic procedure leads to the formation of multiple photoinduced emissive colour centres, which ultimately results in highly Stokes‐shifted, ultrabroad white light emission. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201915708 |