Loading…

Cleft prediction before birth using deep neural network

In developing countries like Pakistan, cleft surgery is expensive for families, and the child also experiences much pain. In this article, we propose a machine learning–based solution to avoid cleft in the mother’s womb. The possibility of cleft lip and palate in embryos can be predicted before birt...

Full description

Saved in:
Bibliographic Details
Published in:Health informatics journal 2020-12, Vol.26 (4), p.2568-2585
Main Authors: Shafi, Numan, Bukhari, Faisal, Iqbal, Waheed, Almustafa, Khaled Mohamad, Asif, Muhammad, Nawaz, Zubair
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In developing countries like Pakistan, cleft surgery is expensive for families, and the child also experiences much pain. In this article, we propose a machine learning–based solution to avoid cleft in the mother’s womb. The possibility of cleft lip and palate in embryos can be predicted before birth by using the proposed solution. We collected 1000 pregnant female samples from three different hospitals in Lahore, Punjab. A questionnaire has been designed to obtain a variety of data, such as gender, parenting, family history of cleft, the order of birth, the number of children, midwives counseling, miscarriage history, parent smoking, and physician visits. Different cleaning, scaling, and feature selection methods have been applied to the data collected. After selecting the best features from the cleft data, various machine learning algorithms were used, including random forest, k-nearest neighbor, decision tree, support vector machine, and multilayer perceptron. In our implementation, multilayer perceptron is a deep neural network, which yields excellent results for the cleft dataset compared to the other methods. We achieved 92.6% accuracy on test data based on the multilayer perceptron model. Our promising results of predictions would help to fight future clefts for children who would have cleft.
ISSN:1460-4582
1741-2811
DOI:10.1177/1460458220911789