Loading…
X-ray dose-dependent structural changes of the [2Fe-2S] ferredoxin from Chlamydomonas reinhardtii
Abstract Plant-type ferredoxin (Fd) is an electron transfer protein in chloroplast. Redox-dependent structural change of Fd controls its association with and dissociation from Fd-dependent enzymes. Among many X-ray structures of oxidized Fd have been reported so far, very likely a given number of th...
Saved in:
Published in: | Journal of biochemistry (Tokyo) 2020-06, Vol.167 (6), p.549-555 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Plant-type ferredoxin (Fd) is an electron transfer protein in chloroplast. Redox-dependent structural change of Fd controls its association with and dissociation from Fd-dependent enzymes. Among many X-ray structures of oxidized Fd have been reported so far, very likely a given number of them was partially reduced by strong X-ray. To understand the precise structural change between reduced and oxidized Fd, it is important to know whether the crystals of oxidized Fd may or may not be reduced during the X-ray experiment. We prepared the thin plate-shaped Fd crystals from Chlamydomonas reinhardtii and monitored its absorption spectra during experiment. Absorption spectra of oxidized Fd crystals were clearly changed to that of reduced form in an X-ray dose-dependent manner. In another independent experiment, the X-ray diffraction images obtained from different parts of one single crystal were sorted and merged to form two datasets with low and high X-ray doses. An Fo–Fo map calculated from the two datasets showed that X-ray reduction causes a small displacement of the iron atoms in the [2Fe-2S] cluster. Both our spectroscopic and crystallographic studies confirm X-ray dose-dependent reduction of Fd, and suggest a structural basis for its initial reduction step especially in the core of the cluster. |
---|---|
ISSN: | 0021-924X 1756-2651 |
DOI: | 10.1093/jb/mvaa045 |