Loading…
Extracting Electronic Transition Bands of Adsorbates from Molecule–Plasmon Excitation Coupling
The coupling between molecular electronic and particle plasmon excitations can result in various intriguing outcomes depending on how strongly or weakly the excitations couple to compete with their respective decay rates. In this work, using methylene blue and thionine dyes as model systems, we show...
Saved in:
Published in: | The journal of physical chemistry letters 2020-05, Vol.11 (9), p.3507-3514 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The coupling between molecular electronic and particle plasmon excitations can result in various intriguing outcomes depending on how strongly or weakly the excitations couple to compete with their respective decay rates. In this work, using methylene blue and thionine dyes as model systems, we show that the electronic absorption band of resonant adsorbates can be determined with submonolayer sensitivity from the weak molecule–plasmon excitation coupling that results in the attenuation on the plasmonic absorption band. The extracted spectra are strongly similar to the absorption spectra of the corresponding molecules in solution, apart from the expected spectral red-shift and broadening. Interestingly, the adsorption isotherms determined on the basis of the magnitude of the attenuation correlate linearly with that determined from the adsorbate-induced plasmon resonance red-shift. The results demonstrate that in the weak coupling regimes the plasmon modes can be considered as an environment that supplies energy to and takes energy from the adsorbates. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.0c00734 |