Loading…

Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota

Resveratrol (RSV) is a natural polyphenol with anti-obesity effects. However, the mechanisms of anti-obesity remain unclear due to its low bioavailability. Recent evidence demonstrates that gut microbiota plays a key role in obesity. This spurred us to investigate whether the anti-obesity effects of...

Full description

Saved in:
Bibliographic Details
Published in:Free radical biology & medicine 2020-08, Vol.156, p.83-98
Main Authors: Wang, Pan, Gao, Jianpeng, Ke, Weixin, Wang, Jing, Li, Daotong, Liu, Ruolin, Jia, Yan, Wang, Xuehua, Chen, Xin, Chen, Fang, Hu, Xiaosong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resveratrol (RSV) is a natural polyphenol with anti-obesity effects. However, the mechanisms of anti-obesity remain unclear due to its low bioavailability. Recent evidence demonstrates that gut microbiota plays a key role in obesity. This spurred us to investigate whether the anti-obesity effects of RSV are related to modulations in the gut microbiota and metabolic functions. Here, RSV significantly improved metabolic phenotype and intestinal oxidative stress in the high-fat diet (HFD)-fed mice. A multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing and metagenome. At the phylogenetic level, RSV treatment significantly modulated the gut microbiota composition in HFD-fed mice, characterized with increased Blautia abundance and decreased Desulfovibrio and Lachnospiraceae_NK4A136_group abundance. At the functional level, RSV significantly decreased the enrichment of pathways linked to host metabolic disease and increased the enrichment of pathways involved in the generation of small metabolites. Besides, the fecal microbiota transplantation experiment showed anti-obesity and microbiota-modulating effects similar to those observed in the oral RSV-feeding experiment. Furthermore, metabolomic analysis and antibiotic treatment verified that 4-hydroxyphenylacetic acid (4-HPA) and 3-hydroxyphenylpropionic acid (3-HPP) were the two gut metabolites of RSV, which contribute to improving lipid metabolism in vitro. Moreover, the content of 4-HPA and 3-HPP exhibited strong correlation with the intestinal oxidative state. We concluded that the RSV-mediated alteration of gut microbiota, related gut metabolites and redox state of the intestinal environment contributed to prevention of metabolic syndrome in HFD-fed mice. [Display omitted] •RSV memorably shifts the microbiome structure and function in HFD mice.•Transplant the RSV-microbiota to HFD mice can fully transfer the anti-obesity effects of RSV.•4-HPA and 3-HPP are two gut metabolites of RSV.•4-HPA and 3-HPP not RSV, reduce fat accumulation in vitro.
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2020.04.013