Loading…

Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis

Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polari...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2020-05, Vol.20 (5), p.3663-3672
Main Authors: Naldoni, Alberto, Kudyshev, Zhaxylyk A, Mascaretti, Luca, Sarmah, Smritakshi P, Rej, Sourav, Froning, Jens P, Tomanec, Ondřej, Yoo, Jeong Eun, Wang, Di, Kment, Štěpán, Montini, Tiziano, Fornasiero, Paolo, Shalaev, Vladimir M, Schmuki, Patrik, Boltasseva, Alexandra, Zbořil, Radek
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03
cites cdi_FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03
container_end_page 3672
container_issue 5
container_start_page 3663
container_title Nano letters
container_volume 20
creator Naldoni, Alberto
Kudyshev, Zhaxylyk A
Mascaretti, Luca
Sarmah, Smritakshi P
Rej, Sourav
Froning, Jens P
Tomanec, Ondřej
Yoo, Jeong Eun
Wang, Di
Kment, Štěpán
Montini, Tiziano
Fornasiero, Paolo
Shalaev, Vladimir M
Schmuki, Patrik
Boltasseva, Alexandra
Zbořil, Radek
description Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic “nanofurnaces” capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10–21 L) volumetric precision, catalyzing CC bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h–1 m–2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.
doi_str_mv 10.1021/acs.nanolett.0c00594
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2394266884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394266884</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJysR3HGVEFFKkqA92ji3tpUyVxsJOh_56UfoxMd8Pzvnd6GHuMYBoBj17Q-GmDja2o66ZgAOJUXrFxFAsIVZry68uu5Yjdeb8DgFTEcMtGggsOPE7GbPltK3TBakuutm2FvrZNaYLlUFz0rkFDQWFdMC8323BFdUsOu95RMKeOnN1QQ7b3wQw7rPa-9PfspsDK08NpTtjq_W01m4eLr4_P2esiRBnJLsy5SJCrdUoScpKKJwalFpEGSFJDuV7LnJMwSomYtEKFKUYUC1lordcgJuz5WNs6-9OT77K69IaqCv_-ybhIJVdKazmg8ogaZ713VGStK2t0-yyC7CAyG0RmZ5HZSeQQezpd6POa1pfQ2dwAwBE4xHf24Kry_3f-Auong4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394266884</pqid></control><display><type>article</type><title>Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Naldoni, Alberto ; Kudyshev, Zhaxylyk A ; Mascaretti, Luca ; Sarmah, Smritakshi P ; Rej, Sourav ; Froning, Jens P ; Tomanec, Ondřej ; Yoo, Jeong Eun ; Wang, Di ; Kment, Štěpán ; Montini, Tiziano ; Fornasiero, Paolo ; Shalaev, Vladimir M ; Schmuki, Patrik ; Boltasseva, Alexandra ; Zbořil, Radek</creator><creatorcontrib>Naldoni, Alberto ; Kudyshev, Zhaxylyk A ; Mascaretti, Luca ; Sarmah, Smritakshi P ; Rej, Sourav ; Froning, Jens P ; Tomanec, Ondřej ; Yoo, Jeong Eun ; Wang, Di ; Kment, Štěpán ; Montini, Tiziano ; Fornasiero, Paolo ; Shalaev, Vladimir M ; Schmuki, Patrik ; Boltasseva, Alexandra ; Zbořil, Radek</creatorcontrib><description>Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic “nanofurnaces” capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10–21 L) volumetric precision, catalyzing CC bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h–1 m–2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c00594</identifier><identifier>PMID: 32320257</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2020-05, Vol.20 (5), p.3663-3672</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03</citedby><cites>FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03</cites><orcidid>0000-0001-5932-2125 ; 0000-0002-9208-5771 ; 0000-0002-3147-2196 ; 0000-0001-8997-7018 ; 0000-0002-3536-7027 ; 0000-0003-1082-9157 ; 0000-0002-6955-0890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32320257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naldoni, Alberto</creatorcontrib><creatorcontrib>Kudyshev, Zhaxylyk A</creatorcontrib><creatorcontrib>Mascaretti, Luca</creatorcontrib><creatorcontrib>Sarmah, Smritakshi P</creatorcontrib><creatorcontrib>Rej, Sourav</creatorcontrib><creatorcontrib>Froning, Jens P</creatorcontrib><creatorcontrib>Tomanec, Ondřej</creatorcontrib><creatorcontrib>Yoo, Jeong Eun</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Kment, Štěpán</creatorcontrib><creatorcontrib>Montini, Tiziano</creatorcontrib><creatorcontrib>Fornasiero, Paolo</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Schmuki, Patrik</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><title>Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic “nanofurnaces” capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10–21 L) volumetric precision, catalyzing CC bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h–1 m–2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJysR3HGVEFFKkqA92ji3tpUyVxsJOh_56UfoxMd8Pzvnd6GHuMYBoBj17Q-GmDja2o66ZgAOJUXrFxFAsIVZry68uu5Yjdeb8DgFTEcMtGggsOPE7GbPltK3TBakuutm2FvrZNaYLlUFz0rkFDQWFdMC8323BFdUsOu95RMKeOnN1QQ7b3wQw7rPa-9PfspsDK08NpTtjq_W01m4eLr4_P2esiRBnJLsy5SJCrdUoScpKKJwalFpEGSFJDuV7LnJMwSomYtEKFKUYUC1lordcgJuz5WNs6-9OT77K69IaqCv_-ybhIJVdKazmg8ogaZ713VGStK2t0-yyC7CAyG0RmZ5HZSeQQezpd6POa1pfQ2dwAwBE4xHf24Kry_3f-Auong4Q</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Naldoni, Alberto</creator><creator>Kudyshev, Zhaxylyk A</creator><creator>Mascaretti, Luca</creator><creator>Sarmah, Smritakshi P</creator><creator>Rej, Sourav</creator><creator>Froning, Jens P</creator><creator>Tomanec, Ondřej</creator><creator>Yoo, Jeong Eun</creator><creator>Wang, Di</creator><creator>Kment, Štěpán</creator><creator>Montini, Tiziano</creator><creator>Fornasiero, Paolo</creator><creator>Shalaev, Vladimir M</creator><creator>Schmuki, Patrik</creator><creator>Boltasseva, Alexandra</creator><creator>Zbořil, Radek</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5932-2125</orcidid><orcidid>https://orcid.org/0000-0002-9208-5771</orcidid><orcidid>https://orcid.org/0000-0002-3147-2196</orcidid><orcidid>https://orcid.org/0000-0001-8997-7018</orcidid><orcidid>https://orcid.org/0000-0002-3536-7027</orcidid><orcidid>https://orcid.org/0000-0003-1082-9157</orcidid><orcidid>https://orcid.org/0000-0002-6955-0890</orcidid></search><sort><creationdate>20200513</creationdate><title>Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis</title><author>Naldoni, Alberto ; Kudyshev, Zhaxylyk A ; Mascaretti, Luca ; Sarmah, Smritakshi P ; Rej, Sourav ; Froning, Jens P ; Tomanec, Ondřej ; Yoo, Jeong Eun ; Wang, Di ; Kment, Štěpán ; Montini, Tiziano ; Fornasiero, Paolo ; Shalaev, Vladimir M ; Schmuki, Patrik ; Boltasseva, Alexandra ; Zbořil, Radek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naldoni, Alberto</creatorcontrib><creatorcontrib>Kudyshev, Zhaxylyk A</creatorcontrib><creatorcontrib>Mascaretti, Luca</creatorcontrib><creatorcontrib>Sarmah, Smritakshi P</creatorcontrib><creatorcontrib>Rej, Sourav</creatorcontrib><creatorcontrib>Froning, Jens P</creatorcontrib><creatorcontrib>Tomanec, Ondřej</creatorcontrib><creatorcontrib>Yoo, Jeong Eun</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Kment, Štěpán</creatorcontrib><creatorcontrib>Montini, Tiziano</creatorcontrib><creatorcontrib>Fornasiero, Paolo</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Schmuki, Patrik</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naldoni, Alberto</au><au>Kudyshev, Zhaxylyk A</au><au>Mascaretti, Luca</au><au>Sarmah, Smritakshi P</au><au>Rej, Sourav</au><au>Froning, Jens P</au><au>Tomanec, Ondřej</au><au>Yoo, Jeong Eun</au><au>Wang, Di</au><au>Kment, Štěpán</au><au>Montini, Tiziano</au><au>Fornasiero, Paolo</au><au>Shalaev, Vladimir M</au><au>Schmuki, Patrik</au><au>Boltasseva, Alexandra</au><au>Zbořil, Radek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>3663</spage><epage>3672</epage><pages>3663-3672</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic “nanofurnaces” capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10–21 L) volumetric precision, catalyzing CC bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h–1 m–2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32320257</pmid><doi>10.1021/acs.nanolett.0c00594</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5932-2125</orcidid><orcidid>https://orcid.org/0000-0002-9208-5771</orcidid><orcidid>https://orcid.org/0000-0002-3147-2196</orcidid><orcidid>https://orcid.org/0000-0001-8997-7018</orcidid><orcidid>https://orcid.org/0000-0002-3536-7027</orcidid><orcidid>https://orcid.org/0000-0003-1082-9157</orcidid><orcidid>https://orcid.org/0000-0002-6955-0890</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2020-05, Vol.20 (5), p.3663-3672
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2394266884
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Thermoplasmonic%20Nanofurnace%20for%20High-Temperature%20Heterogeneous%20Catalysis&rft.jtitle=Nano%20letters&rft.au=Naldoni,%20Alberto&rft.date=2020-05-13&rft.volume=20&rft.issue=5&rft.spage=3663&rft.epage=3672&rft.pages=3663-3672&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c00594&rft_dat=%3Cproquest_cross%3E2394266884%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394266884&rft_id=info:pmid/32320257&rfr_iscdi=true