Loading…
Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis
Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polari...
Saved in:
Published in: | Nano letters 2020-05, Vol.20 (5), p.3663-3672 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03 |
---|---|
cites | cdi_FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03 |
container_end_page | 3672 |
container_issue | 5 |
container_start_page | 3663 |
container_title | Nano letters |
container_volume | 20 |
creator | Naldoni, Alberto Kudyshev, Zhaxylyk A Mascaretti, Luca Sarmah, Smritakshi P Rej, Sourav Froning, Jens P Tomanec, Ondřej Yoo, Jeong Eun Wang, Di Kment, Štěpán Montini, Tiziano Fornasiero, Paolo Shalaev, Vladimir M Schmuki, Patrik Boltasseva, Alexandra Zbořil, Radek |
description | Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic “nanofurnaces” capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10–21 L) volumetric precision, catalyzing CC bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h–1 m–2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes. |
doi_str_mv | 10.1021/acs.nanolett.0c00594 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2394266884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394266884</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJysR3HGVEFFKkqA92ji3tpUyVxsJOh_56UfoxMd8Pzvnd6GHuMYBoBj17Q-GmDja2o66ZgAOJUXrFxFAsIVZry68uu5Yjdeb8DgFTEcMtGggsOPE7GbPltK3TBakuutm2FvrZNaYLlUFz0rkFDQWFdMC8323BFdUsOu95RMKeOnN1QQ7b3wQw7rPa-9PfspsDK08NpTtjq_W01m4eLr4_P2esiRBnJLsy5SJCrdUoScpKKJwalFpEGSFJDuV7LnJMwSomYtEKFKUYUC1lordcgJuz5WNs6-9OT77K69IaqCv_-ybhIJVdKazmg8ogaZ713VGStK2t0-yyC7CAyG0RmZ5HZSeQQezpd6POa1pfQ2dwAwBE4xHf24Kry_3f-Auong4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394266884</pqid></control><display><type>article</type><title>Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Naldoni, Alberto ; Kudyshev, Zhaxylyk A ; Mascaretti, Luca ; Sarmah, Smritakshi P ; Rej, Sourav ; Froning, Jens P ; Tomanec, Ondřej ; Yoo, Jeong Eun ; Wang, Di ; Kment, Štěpán ; Montini, Tiziano ; Fornasiero, Paolo ; Shalaev, Vladimir M ; Schmuki, Patrik ; Boltasseva, Alexandra ; Zbořil, Radek</creator><creatorcontrib>Naldoni, Alberto ; Kudyshev, Zhaxylyk A ; Mascaretti, Luca ; Sarmah, Smritakshi P ; Rej, Sourav ; Froning, Jens P ; Tomanec, Ondřej ; Yoo, Jeong Eun ; Wang, Di ; Kment, Štěpán ; Montini, Tiziano ; Fornasiero, Paolo ; Shalaev, Vladimir M ; Schmuki, Patrik ; Boltasseva, Alexandra ; Zbořil, Radek</creatorcontrib><description>Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic “nanofurnaces” capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10–21 L) volumetric precision, catalyzing CC bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h–1 m–2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c00594</identifier><identifier>PMID: 32320257</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2020-05, Vol.20 (5), p.3663-3672</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03</citedby><cites>FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03</cites><orcidid>0000-0001-5932-2125 ; 0000-0002-9208-5771 ; 0000-0002-3147-2196 ; 0000-0001-8997-7018 ; 0000-0002-3536-7027 ; 0000-0003-1082-9157 ; 0000-0002-6955-0890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32320257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naldoni, Alberto</creatorcontrib><creatorcontrib>Kudyshev, Zhaxylyk A</creatorcontrib><creatorcontrib>Mascaretti, Luca</creatorcontrib><creatorcontrib>Sarmah, Smritakshi P</creatorcontrib><creatorcontrib>Rej, Sourav</creatorcontrib><creatorcontrib>Froning, Jens P</creatorcontrib><creatorcontrib>Tomanec, Ondřej</creatorcontrib><creatorcontrib>Yoo, Jeong Eun</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Kment, Štěpán</creatorcontrib><creatorcontrib>Montini, Tiziano</creatorcontrib><creatorcontrib>Fornasiero, Paolo</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Schmuki, Patrik</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><title>Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic “nanofurnaces” capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10–21 L) volumetric precision, catalyzing CC bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h–1 m–2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJysR3HGVEFFKkqA92ji3tpUyVxsJOh_56UfoxMd8Pzvnd6GHuMYBoBj17Q-GmDja2o66ZgAOJUXrFxFAsIVZry68uu5Yjdeb8DgFTEcMtGggsOPE7GbPltK3TBakuutm2FvrZNaYLlUFz0rkFDQWFdMC8323BFdUsOu95RMKeOnN1QQ7b3wQw7rPa-9PfspsDK08NpTtjq_W01m4eLr4_P2esiRBnJLsy5SJCrdUoScpKKJwalFpEGSFJDuV7LnJMwSomYtEKFKUYUC1lordcgJuz5WNs6-9OT77K69IaqCv_-ybhIJVdKazmg8ogaZ713VGStK2t0-yyC7CAyG0RmZ5HZSeQQezpd6POa1pfQ2dwAwBE4xHf24Kry_3f-Auong4Q</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Naldoni, Alberto</creator><creator>Kudyshev, Zhaxylyk A</creator><creator>Mascaretti, Luca</creator><creator>Sarmah, Smritakshi P</creator><creator>Rej, Sourav</creator><creator>Froning, Jens P</creator><creator>Tomanec, Ondřej</creator><creator>Yoo, Jeong Eun</creator><creator>Wang, Di</creator><creator>Kment, Štěpán</creator><creator>Montini, Tiziano</creator><creator>Fornasiero, Paolo</creator><creator>Shalaev, Vladimir M</creator><creator>Schmuki, Patrik</creator><creator>Boltasseva, Alexandra</creator><creator>Zbořil, Radek</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5932-2125</orcidid><orcidid>https://orcid.org/0000-0002-9208-5771</orcidid><orcidid>https://orcid.org/0000-0002-3147-2196</orcidid><orcidid>https://orcid.org/0000-0001-8997-7018</orcidid><orcidid>https://orcid.org/0000-0002-3536-7027</orcidid><orcidid>https://orcid.org/0000-0003-1082-9157</orcidid><orcidid>https://orcid.org/0000-0002-6955-0890</orcidid></search><sort><creationdate>20200513</creationdate><title>Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis</title><author>Naldoni, Alberto ; Kudyshev, Zhaxylyk A ; Mascaretti, Luca ; Sarmah, Smritakshi P ; Rej, Sourav ; Froning, Jens P ; Tomanec, Ondřej ; Yoo, Jeong Eun ; Wang, Di ; Kment, Štěpán ; Montini, Tiziano ; Fornasiero, Paolo ; Shalaev, Vladimir M ; Schmuki, Patrik ; Boltasseva, Alexandra ; Zbořil, Radek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naldoni, Alberto</creatorcontrib><creatorcontrib>Kudyshev, Zhaxylyk A</creatorcontrib><creatorcontrib>Mascaretti, Luca</creatorcontrib><creatorcontrib>Sarmah, Smritakshi P</creatorcontrib><creatorcontrib>Rej, Sourav</creatorcontrib><creatorcontrib>Froning, Jens P</creatorcontrib><creatorcontrib>Tomanec, Ondřej</creatorcontrib><creatorcontrib>Yoo, Jeong Eun</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Kment, Štěpán</creatorcontrib><creatorcontrib>Montini, Tiziano</creatorcontrib><creatorcontrib>Fornasiero, Paolo</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Schmuki, Patrik</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naldoni, Alberto</au><au>Kudyshev, Zhaxylyk A</au><au>Mascaretti, Luca</au><au>Sarmah, Smritakshi P</au><au>Rej, Sourav</au><au>Froning, Jens P</au><au>Tomanec, Ondřej</au><au>Yoo, Jeong Eun</au><au>Wang, Di</au><au>Kment, Štěpán</au><au>Montini, Tiziano</au><au>Fornasiero, Paolo</au><au>Shalaev, Vladimir M</au><au>Schmuki, Patrik</au><au>Boltasseva, Alexandra</au><au>Zbořil, Radek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>3663</spage><epage>3672</epage><pages>3663-3672</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300–600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic “nanofurnaces” capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10–21 L) volumetric precision, catalyzing CC bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h–1 m–2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32320257</pmid><doi>10.1021/acs.nanolett.0c00594</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5932-2125</orcidid><orcidid>https://orcid.org/0000-0002-9208-5771</orcidid><orcidid>https://orcid.org/0000-0002-3147-2196</orcidid><orcidid>https://orcid.org/0000-0001-8997-7018</orcidid><orcidid>https://orcid.org/0000-0002-3536-7027</orcidid><orcidid>https://orcid.org/0000-0003-1082-9157</orcidid><orcidid>https://orcid.org/0000-0002-6955-0890</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2020-05, Vol.20 (5), p.3663-3672 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2394266884 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Thermoplasmonic%20Nanofurnace%20for%20High-Temperature%20Heterogeneous%20Catalysis&rft.jtitle=Nano%20letters&rft.au=Naldoni,%20Alberto&rft.date=2020-05-13&rft.volume=20&rft.issue=5&rft.spage=3663&rft.epage=3672&rft.pages=3663-3672&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c00594&rft_dat=%3Cproquest_cross%3E2394266884%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-b237a26d9e40be4627ca483180079ceb8d4b2e3c6635e86a6a9a1e534f888d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394266884&rft_id=info:pmid/32320257&rfr_iscdi=true |