Loading…
Scanning Moiré Fringe Method: A Superior Approach to Perceive Defects, Interfaces, and Distortion in 2D Materials
Scanning moiré fringe (SMF) is a widely utilized technique for the precise measurement of the strain field in semiconductor transistors and heterointerfaces. With the growing challenges of traditional chip scaling, two-dimensional (2D) materials turn out to be ideal candidates for incorporation int...
Saved in:
Published in: | ACS nano 2020-05, Vol.14 (5), p.6034-6042 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Scanning moiré fringe (SMF) is a widely utilized technique for the precise measurement of the strain field in semiconductor transistors and heterointerfaces. With the growing challenges of traditional chip scaling, two-dimensional (2D) materials turn out to be ideal candidates for incorporation into semiconductor devices. Therefore, a method to efficiently locate defects and grain boundaries in 2D materials is highly essential. Here, we present a demonstration of using the SMF method to locate the domain boundaries at the nearly coherent interfaces with sub-angstrom spatial resolution under submicron fields of views. The strain field of small angle grain boundary and lateral heterojunction are instantaneously found and precisely determined by a quick SMF method without any atomic resolution images. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.0c01729 |