Loading…

Liquefying Compounds by Forming Deep Eutectic Solvents: A Case Study for Organic Acids and Alcohols

The criterion to distinguish a simple eutectic mixture from a deep eutectic solvent (DES) lies in the deviations to thermodynamic ideality presented by the components in the system. In this work, the current knowledge of the molecular interactions in types III and V DES is explored to liquefy a set...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2020-05, Vol.124 (20), p.4174-4184
Main Authors: Abranches, Dinis O, Martins, Renato O, Silva, Liliana P, Martins, Mónia A. R, Pinho, Simão P, Coutinho, João A. P
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The criterion to distinguish a simple eutectic mixture from a deep eutectic solvent (DES) lies in the deviations to thermodynamic ideality presented by the components in the system. In this work, the current knowledge of the molecular interactions in types III and V DES is explored to liquefy a set of three fatty acids and three fatty alcohols, here used as model compounds for carboxyl and hydroxyl containing solid compounds. This work shows that thymol, a stronger than usual hydrogen bond donor, is able to form deep eutectic solvents of type V with the fatty alcohols studied. This is particularly interesting, since these DES formed are hydrophobic. Regarding type III DES, the results suggest that the prototypical DES hydrogen bond acceptor, cholinium chloride, is unable to induce negative deviations to ideality in the model molecules studied. By substituting choline with tetramethylammonium chloride, it is shown that the choline hydroxyl group is responsible for the difficulty in forming choline-based deep eutectic solvents and that its absence induces strong negative deviations to ideality in the alkylammonium side. Finally, it is demonstrated that tetrabutylammonium chloride acts as a chloride donning agent, causing significant negative deviations to ideality in both fatty acids and alcohols and leading to the formation of deep eutectic solvents of type III.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.0c02386