Loading…
Dendrite P systems
It was recently found that dendrites are not just a passive channel. They can perform mixed computation of analog and digital signals, and therefore can be abstracted as information processors. Moreover, dendrites possess a feedback mechanism. Motivated by these computational and feedback characteri...
Saved in:
Published in: | Neural networks 2020-07, Vol.127, p.110-120 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It was recently found that dendrites are not just a passive channel. They can perform mixed computation of analog and digital signals, and therefore can be abstracted as information processors. Moreover, dendrites possess a feedback mechanism. Motivated by these computational and feedback characteristics, this article proposes a new variant of neural-like P systems, dendrite P (DeP) systems, where neurons simulate the computational function of dendrites and perform a firing–storing process instead of the storing–firing process in spiking neural P (SNP) systems. Moreover, the behavior of the neurons is characterized by dendrite rules that are abstracted by two characteristics of dendrites. Different from the usual firing rules in SNP systems, the firing of a dendrite rule is controlled by the states of the corresponding source neurons. Therefore, DeP systems can provide a collaborative control capability for neurons. We discuss the computational power of DeP systems. In particular, it is proven that DeP systems are Turing-universal number generating/accepting devices. Moreover, we construct a small universal DeP system consisting of 115 neurons for computing functions.
•We consider dendrites as information processors.•We propose a new model, dendrite P systems (DeP systems, in short).•We prove that DeP systems are Turing-universal number generating/accepting devices.•We construct a small universal DeP system of 115 neurons for computing functions. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2020.04.014 |