Loading…

Prediction of drug adverse events using deep learning in pharmaceutical discovery

Abstract Traditional machine learning methods used to detect the side effects of drugs pose significant challenges as feature engineering processes are labor-intensive, expert-dependent, time-consuming and cost-ineffective. Moreover, these methods only focus on detecting the association between drug...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics 2021-03, Vol.22 (2), p.1884-1901
Main Authors: Lee, Chun Yen, Chen, Yi-Ping Phoebe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-58dc0b7ae96b949ee51f73f62f7dc241658d5e3b6e259876d82ab05d891ba8213
cites cdi_FETCH-LOGICAL-c414t-58dc0b7ae96b949ee51f73f62f7dc241658d5e3b6e259876d82ab05d891ba8213
container_end_page 1901
container_issue 2
container_start_page 1884
container_title Briefings in bioinformatics
container_volume 22
creator Lee, Chun Yen
Chen, Yi-Ping Phoebe
description Abstract Traditional machine learning methods used to detect the side effects of drugs pose significant challenges as feature engineering processes are labor-intensive, expert-dependent, time-consuming and cost-ineffective. Moreover, these methods only focus on detecting the association between drugs and their side effects or classifying drug–drug interaction. Motivated by technological advancements and the availability of big data, we provide a review on the detection and classification of side effects using deep learning approaches. It is shown that the effective integration of heterogeneous, multidimensional drug data sources, together with the innovative deployment of deep learning approaches, helps reduce or prevent the occurrence of adverse drug reactions (ADRs). Deep learning approaches can also be exploited to find replacements for drugs which have side effects or help to diversify the utilization of drugs through drug repurposing.
doi_str_mv 10.1093/bib/bbaa040
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2396854587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbaa040</oup_id><sourcerecordid>2529971673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-58dc0b7ae96b949ee51f73f62f7dc241658d5e3b6e259876d82ab05d891ba8213</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgitXqyr0EBBGkNskkk8lSii8oqKDrIZncqVPmZTIp9N-b0iriwtXNhS-Hy0HojJIbSlQyNZWZGqM14WQPHVEu5YQTwfd_vUfo2PslIYzIjB6iUcISrigTR-j1xYGtiqHqWtyV2LqwwNquwHnAsIJ28Dj4ql1gC9DjGrRrN1vV4v5Du0YXEIaq0DW2lS-6-G99gg5KXXs43c0xer-_e5s9TubPD0-z2_mk4JQPE5HZghipQaVGcQUgaCmTMmWltAXjNI1AQGJSYEJlMrUZ04YImylqdMZoMkZX29zedZ8B_JA38QSoa91CF3zOEpVmgotMRnrxhy674Np4Xc4EU0rSVCZRXW9V4TrvHZR576pGu3VOSb5pOo9N57umoz7fZQbTgP2x39VGcLkFXej_TfoCXkeGuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529971673</pqid></control><display><type>article</type><title>Prediction of drug adverse events using deep learning in pharmaceutical discovery</title><source>Open Access: Oxford University Press Open Journals</source><creator>Lee, Chun Yen ; Chen, Yi-Ping Phoebe</creator><creatorcontrib>Lee, Chun Yen ; Chen, Yi-Ping Phoebe</creatorcontrib><description>Abstract Traditional machine learning methods used to detect the side effects of drugs pose significant challenges as feature engineering processes are labor-intensive, expert-dependent, time-consuming and cost-ineffective. Moreover, these methods only focus on detecting the association between drugs and their side effects or classifying drug–drug interaction. Motivated by technological advancements and the availability of big data, we provide a review on the detection and classification of side effects using deep learning approaches. It is shown that the effective integration of heterogeneous, multidimensional drug data sources, together with the innovative deployment of deep learning approaches, helps reduce or prevent the occurrence of adverse drug reactions (ADRs). Deep learning approaches can also be exploited to find replacements for drugs which have side effects or help to diversify the utilization of drugs through drug repurposing.</description><identifier>ISSN: 1477-4054</identifier><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbaa040</identifier><identifier>PMID: 32349125</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Classification ; Deep learning ; Drug interaction ; Drug interactions ; Drugs ; Learning algorithms ; Machine learning ; Side effects</subject><ispartof>Briefings in bioinformatics, 2021-03, Vol.22 (2), p.1884-1901</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-58dc0b7ae96b949ee51f73f62f7dc241658d5e3b6e259876d82ab05d891ba8213</citedby><cites>FETCH-LOGICAL-c414t-58dc0b7ae96b949ee51f73f62f7dc241658d5e3b6e259876d82ab05d891ba8213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbaa040$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32349125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Chun Yen</creatorcontrib><creatorcontrib>Chen, Yi-Ping Phoebe</creatorcontrib><title>Prediction of drug adverse events using deep learning in pharmaceutical discovery</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Traditional machine learning methods used to detect the side effects of drugs pose significant challenges as feature engineering processes are labor-intensive, expert-dependent, time-consuming and cost-ineffective. Moreover, these methods only focus on detecting the association between drugs and their side effects or classifying drug–drug interaction. Motivated by technological advancements and the availability of big data, we provide a review on the detection and classification of side effects using deep learning approaches. It is shown that the effective integration of heterogeneous, multidimensional drug data sources, together with the innovative deployment of deep learning approaches, helps reduce or prevent the occurrence of adverse drug reactions (ADRs). Deep learning approaches can also be exploited to find replacements for drugs which have side effects or help to diversify the utilization of drugs through drug repurposing.</description><subject>Classification</subject><subject>Deep learning</subject><subject>Drug interaction</subject><subject>Drug interactions</subject><subject>Drugs</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Side effects</subject><issn>1477-4054</issn><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgitXqyr0EBBGkNskkk8lSii8oqKDrIZncqVPmZTIp9N-b0iriwtXNhS-Hy0HojJIbSlQyNZWZGqM14WQPHVEu5YQTwfd_vUfo2PslIYzIjB6iUcISrigTR-j1xYGtiqHqWtyV2LqwwNquwHnAsIJ28Dj4ql1gC9DjGrRrN1vV4v5Du0YXEIaq0DW2lS-6-G99gg5KXXs43c0xer-_e5s9TubPD0-z2_mk4JQPE5HZghipQaVGcQUgaCmTMmWltAXjNI1AQGJSYEJlMrUZ04YImylqdMZoMkZX29zedZ8B_JA38QSoa91CF3zOEpVmgotMRnrxhy674Np4Xc4EU0rSVCZRXW9V4TrvHZR576pGu3VOSb5pOo9N57umoz7fZQbTgP2x39VGcLkFXej_TfoCXkeGuw</recordid><startdate>20210322</startdate><enddate>20210322</enddate><creator>Lee, Chun Yen</creator><creator>Chen, Yi-Ping Phoebe</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20210322</creationdate><title>Prediction of drug adverse events using deep learning in pharmaceutical discovery</title><author>Lee, Chun Yen ; Chen, Yi-Ping Phoebe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-58dc0b7ae96b949ee51f73f62f7dc241658d5e3b6e259876d82ab05d891ba8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Deep learning</topic><topic>Drug interaction</topic><topic>Drug interactions</topic><topic>Drugs</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chun Yen</creatorcontrib><creatorcontrib>Chen, Yi-Ping Phoebe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Chun Yen</au><au>Chen, Yi-Ping Phoebe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of drug adverse events using deep learning in pharmaceutical discovery</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-03-22</date><risdate>2021</risdate><volume>22</volume><issue>2</issue><spage>1884</spage><epage>1901</epage><pages>1884-1901</pages><issn>1477-4054</issn><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Traditional machine learning methods used to detect the side effects of drugs pose significant challenges as feature engineering processes are labor-intensive, expert-dependent, time-consuming and cost-ineffective. Moreover, these methods only focus on detecting the association between drugs and their side effects or classifying drug–drug interaction. Motivated by technological advancements and the availability of big data, we provide a review on the detection and classification of side effects using deep learning approaches. It is shown that the effective integration of heterogeneous, multidimensional drug data sources, together with the innovative deployment of deep learning approaches, helps reduce or prevent the occurrence of adverse drug reactions (ADRs). Deep learning approaches can also be exploited to find replacements for drugs which have side effects or help to diversify the utilization of drugs through drug repurposing.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32349125</pmid><doi>10.1093/bib/bbaa040</doi><tpages>18</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1477-4054
ispartof Briefings in bioinformatics, 2021-03, Vol.22 (2), p.1884-1901
issn 1477-4054
1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2396854587
source Open Access: Oxford University Press Open Journals
subjects Classification
Deep learning
Drug interaction
Drug interactions
Drugs
Learning algorithms
Machine learning
Side effects
title Prediction of drug adverse events using deep learning in pharmaceutical discovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20drug%20adverse%20events%20using%20deep%20learning%20in%20pharmaceutical%20discovery&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Lee,%20Chun%20Yen&rft.date=2021-03-22&rft.volume=22&rft.issue=2&rft.spage=1884&rft.epage=1901&rft.pages=1884-1901&rft.issn=1477-4054&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbaa040&rft_dat=%3Cproquest_TOX%3E2529971673%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-58dc0b7ae96b949ee51f73f62f7dc241658d5e3b6e259876d82ab05d891ba8213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2529971673&rft_id=info:pmid/32349125&rft_oup_id=10.1093/bib/bbaa040&rfr_iscdi=true