Loading…

Development of a sandwich ELISA for the detection of Chinese sacbrood virus infection

Chinese sacbrood disease (CSBD) is a highly pathogenic infectious disease in bees that is caused by Chinese sacbrood virus (CSBV). Although several molecular detection methods have been developed for CSBV, there are no commercially available enzyme-linked immunosorbent assay (ELISA) kits. We therefo...

Full description

Saved in:
Bibliographic Details
Published in:Archives of virology 2020-07, Vol.165 (7), p.1551-1556
Main Authors: Li, Ming, Sun, Li, Ma, Yueyu, Fei, Dongliang, Ma, Mingxiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chinese sacbrood disease (CSBD) is a highly pathogenic infectious disease in bees that is caused by Chinese sacbrood virus (CSBV). Although several molecular detection methods have been developed for CSBV, there are no commercially available enzyme-linked immunosorbent assay (ELISA) kits. We therefore developed a sandwich ELISA to detect CSBV antigens. To this end, monoclonal antibodies were produced using VP2 as an immunogen and subsequently characterized. Hybridomas were screened for the secretion of immunoglobulin G (IgG). Using an unlabeled monoclonal antibody (mAb) for coating and a horseradish peroxidase (HRP)-labeled mAb for detection, a CSBV sandwich ELISA method was established. This method showed specificity for CSBV and did not show cross-reactivity with other bee viruses. The detection limit of the sandwich ELISA was 3.675 × 10 4 copies/µL. Sixty bee larvae were tested using our sandwich ELISA method, and the presence of CSBV was verified by reverse transcription polymerase chain reaction (RT-PCR). The total coincidence rate was 90%. Thus, a sandwich ELISA method with high specificity and accuracy and a detection limit of 3.675 × 10 4 copies/µL has been successfully developed and can be used for the clinical detection of CSBV. This method will support rapid diagnosis, real-time monitoring, and early warning of CSBD.
ISSN:0304-8608
1432-8798
DOI:10.1007/s00705-020-04634-2