Loading…
New function of the CD44 gene: Lipid metabolism regulation in bovine mammary epithelial cells
The CD44 gene encodes a cell-surface glycoprotein that participates in a variety of biological processes such as cell interactions, adhesion, hematopoiesis, and tumor metastasis. We compared the transcriptome in bovine mammary epithelial cells (bMEC) of Chinese Holstein dairy cows producing milk of...
Saved in:
Published in: | Journal of dairy science 2020-07, Vol.103 (7), p.6661-6671 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The CD44 gene encodes a cell-surface glycoprotein that participates in a variety of biological processes such as cell interactions, adhesion, hematopoiesis, and tumor metastasis. We compared the transcriptome in bovine mammary epithelial cells (bMEC) of Chinese Holstein dairy cows producing milk of high and low fat contents. Our results suggest that CD44 might be a candidate gene affecting milk fat synthesis. In the present study, the overexpression of the CD44 gene increased the contents of intracellular triglycerides (TG) and cholesterol (CHOL), whereas knockdown of the CD44 gene decreased bMEC CHOL and TG contents. Gas chromatography analysis of fatty acid composition showed that the contents of α-linolenic acid, palmitic acid, and cis-8,11,14-eicosatrienoic acid were altered due to changes in the level of expression of the CD44 gene. Additionally, elaidic acid, palmitoleic acid, tridecanoic acid, and oleic acid were markedly reduced in the CD44 gene overexpression group compared with the control group. On the contrary, cis-5,8,11,14-eicosatetraenoic acid and stearic acid were markedly increased in the CD44 knockdown group compared with the control group. And RT2 Profiler PCR array (Qiagen, CLAB24070A Frankfurt, Germany) further suggested that overexpression or knockdown of the CD44 gene altered expression levels of functional genes associated with lipid metabolism. The present data indicate that CD44 plays a key regulatory role in lipid metabolism in bMEC. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2019-17415 |