Loading…

Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter

Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate C and N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2020-07, Vol.21 (13), p.1436-1443
Main Authors: Kraus, Jodi, Gupta, Rupal, Lu, Manman, Gronenborn, Angela M, Akke, Mikael, Polenova, Tatyana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1407-72a499dc4709e774785b3085213127542dbce12a164daa48bfa9240e30ef00c23
cites cdi_FETCH-LOGICAL-c1407-72a499dc4709e774785b3085213127542dbce12a164daa48bfa9240e30ef00c23
container_end_page 1443
container_issue 13
container_start_page 1436
container_title Chemphyschem
container_volume 21
creator Kraus, Jodi
Gupta, Rupal
Lu, Manman
Gronenborn, Angela M
Akke, Mikael
Polenova, Tatyana
description Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate C and N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly for N atoms. Here we compare experimentally determined backbone C and N chemical shift tensors by MAS NMR with hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) calculations for the carbohydrate-binding domain of galectin-3. Excellent agreement between experimental and computed N chemical shift anisotropy values was obtained using the Amber ff15ipq force field when solvent dynamics was taken into account in the calculation. Our results establish important benchmark conditions for improving the accuracy of chemical shift calculations in proteins and may aid in the validation of protein structure models derived by MAS NMR.
doi_str_mv 10.1002/cphc.202000249
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2398160574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398160574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1407-72a499dc4709e774785b3085213127542dbce12a164daa48bfa9240e30ef00c23</originalsourceid><addsrcrecordid>eNo9kctu2zAQRYmiQe08tl0Ws-xGDl8ype5cNy_ASpDYWQsUNYLZSpRDUgXyGfnjyImT1cxgzpzFXEK-MzpjlPJzs9uaGaecjoPMv5ApkyJP1Fyyr4decpFOyHEIf0cmo4p9IxPBxVworqbkZWHM4HVE-K3Nv6p3CEzAErSrgaVwC8stdtboFtZb20TYoAu9D2AdXOkWTbQuEfAHI_rOOqyheoZisYbb4uHNcV-cF8WvPaBtG6BvYB39YOLg8W1_4f5b37sOXYRCx1FzSo4a3QY8O9QT8nh5sVleJ6u7q5vlYpUYJqlKFNcyz2sjFc1RKamytBI0SzkTjKtU8royyLhmc1lrLbOq0TmXFAXFhlLDxQn5-e7d-f5pwBDLzgaDbasd9kMoucgzNqepkiM6e0eN70Pw2JQ7bzvtn0tGy30M5T6G8jOG8eDHwT1UHdaf-MffxSsGPoAK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398160574</pqid></control><display><type>article</type><title>Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kraus, Jodi ; Gupta, Rupal ; Lu, Manman ; Gronenborn, Angela M ; Akke, Mikael ; Polenova, Tatyana</creator><creatorcontrib>Kraus, Jodi ; Gupta, Rupal ; Lu, Manman ; Gronenborn, Angela M ; Akke, Mikael ; Polenova, Tatyana</creatorcontrib><description>Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate C and N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly for N atoms. Here we compare experimentally determined backbone C and N chemical shift tensors by MAS NMR with hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) calculations for the carbohydrate-binding domain of galectin-3. Excellent agreement between experimental and computed N chemical shift anisotropy values was obtained using the Amber ff15ipq force field when solvent dynamics was taken into account in the calculation. Our results establish important benchmark conditions for improving the accuracy of chemical shift calculations in proteins and may aid in the validation of protein structure models derived by MAS NMR.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202000249</identifier><identifier>PMID: 32363727</identifier><language>eng</language><publisher>Germany</publisher><subject>Blood Proteins - chemistry ; Carbon Isotopes - chemistry ; Density Functional Theory ; Galectins - chemistry ; Humans ; Models, Chemical ; Molecular Dynamics Simulation ; Nitrogen Isotopes - chemistry ; Nuclear Magnetic Resonance, Biomolecular</subject><ispartof>Chemphyschem, 2020-07, Vol.21 (13), p.1436-1443</ispartof><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1407-72a499dc4709e774785b3085213127542dbce12a164daa48bfa9240e30ef00c23</citedby><cites>FETCH-LOGICAL-c1407-72a499dc4709e774785b3085213127542dbce12a164daa48bfa9240e30ef00c23</cites><orcidid>0000-0001-8637-6129 ; 0000-0002-2395-825X ; 0000-0002-6395-6283 ; 0000-0002-4156-4975 ; 0000-0002-0346-1131 ; 0000-0001-9072-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32363727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kraus, Jodi</creatorcontrib><creatorcontrib>Gupta, Rupal</creatorcontrib><creatorcontrib>Lu, Manman</creatorcontrib><creatorcontrib>Gronenborn, Angela M</creatorcontrib><creatorcontrib>Akke, Mikael</creatorcontrib><creatorcontrib>Polenova, Tatyana</creatorcontrib><title>Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate C and N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly for N atoms. Here we compare experimentally determined backbone C and N chemical shift tensors by MAS NMR with hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) calculations for the carbohydrate-binding domain of galectin-3. Excellent agreement between experimental and computed N chemical shift anisotropy values was obtained using the Amber ff15ipq force field when solvent dynamics was taken into account in the calculation. Our results establish important benchmark conditions for improving the accuracy of chemical shift calculations in proteins and may aid in the validation of protein structure models derived by MAS NMR.</description><subject>Blood Proteins - chemistry</subject><subject>Carbon Isotopes - chemistry</subject><subject>Density Functional Theory</subject><subject>Galectins - chemistry</subject><subject>Humans</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Nitrogen Isotopes - chemistry</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kctu2zAQRYmiQe08tl0Ws-xGDl8ype5cNy_ASpDYWQsUNYLZSpRDUgXyGfnjyImT1cxgzpzFXEK-MzpjlPJzs9uaGaecjoPMv5ApkyJP1Fyyr4decpFOyHEIf0cmo4p9IxPBxVworqbkZWHM4HVE-K3Nv6p3CEzAErSrgaVwC8stdtboFtZb20TYoAu9D2AdXOkWTbQuEfAHI_rOOqyheoZisYbb4uHNcV-cF8WvPaBtG6BvYB39YOLg8W1_4f5b37sOXYRCx1FzSo4a3QY8O9QT8nh5sVleJ6u7q5vlYpUYJqlKFNcyz2sjFc1RKamytBI0SzkTjKtU8royyLhmc1lrLbOq0TmXFAXFhlLDxQn5-e7d-f5pwBDLzgaDbasd9kMoucgzNqepkiM6e0eN70Pw2JQ7bzvtn0tGy30M5T6G8jOG8eDHwT1UHdaf-MffxSsGPoAK</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Kraus, Jodi</creator><creator>Gupta, Rupal</creator><creator>Lu, Manman</creator><creator>Gronenborn, Angela M</creator><creator>Akke, Mikael</creator><creator>Polenova, Tatyana</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8637-6129</orcidid><orcidid>https://orcid.org/0000-0002-2395-825X</orcidid><orcidid>https://orcid.org/0000-0002-6395-6283</orcidid><orcidid>https://orcid.org/0000-0002-4156-4975</orcidid><orcidid>https://orcid.org/0000-0002-0346-1131</orcidid><orcidid>https://orcid.org/0000-0001-9072-3525</orcidid></search><sort><creationdate>20200702</creationdate><title>Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter</title><author>Kraus, Jodi ; Gupta, Rupal ; Lu, Manman ; Gronenborn, Angela M ; Akke, Mikael ; Polenova, Tatyana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1407-72a499dc4709e774785b3085213127542dbce12a164daa48bfa9240e30ef00c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blood Proteins - chemistry</topic><topic>Carbon Isotopes - chemistry</topic><topic>Density Functional Theory</topic><topic>Galectins - chemistry</topic><topic>Humans</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Nitrogen Isotopes - chemistry</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kraus, Jodi</creatorcontrib><creatorcontrib>Gupta, Rupal</creatorcontrib><creatorcontrib>Lu, Manman</creatorcontrib><creatorcontrib>Gronenborn, Angela M</creatorcontrib><creatorcontrib>Akke, Mikael</creatorcontrib><creatorcontrib>Polenova, Tatyana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraus, Jodi</au><au>Gupta, Rupal</au><au>Lu, Manman</au><au>Gronenborn, Angela M</au><au>Akke, Mikael</au><au>Polenova, Tatyana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2020-07-02</date><risdate>2020</risdate><volume>21</volume><issue>13</issue><spage>1436</spage><epage>1443</epage><pages>1436-1443</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate C and N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly for N atoms. Here we compare experimentally determined backbone C and N chemical shift tensors by MAS NMR with hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) calculations for the carbohydrate-binding domain of galectin-3. Excellent agreement between experimental and computed N chemical shift anisotropy values was obtained using the Amber ff15ipq force field when solvent dynamics was taken into account in the calculation. Our results establish important benchmark conditions for improving the accuracy of chemical shift calculations in proteins and may aid in the validation of protein structure models derived by MAS NMR.</abstract><cop>Germany</cop><pmid>32363727</pmid><doi>10.1002/cphc.202000249</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8637-6129</orcidid><orcidid>https://orcid.org/0000-0002-2395-825X</orcidid><orcidid>https://orcid.org/0000-0002-6395-6283</orcidid><orcidid>https://orcid.org/0000-0002-4156-4975</orcidid><orcidid>https://orcid.org/0000-0002-0346-1131</orcidid><orcidid>https://orcid.org/0000-0001-9072-3525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2020-07, Vol.21 (13), p.1436-1443
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_2398160574
source Wiley-Blackwell Read & Publish Collection
subjects Blood Proteins - chemistry
Carbon Isotopes - chemistry
Density Functional Theory
Galectins - chemistry
Humans
Models, Chemical
Molecular Dynamics Simulation
Nitrogen Isotopes - chemistry
Nuclear Magnetic Resonance, Biomolecular
title Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Backbone%2013%20C%20and%2015%20N%20Chemical%20Shift%20Tensors%20in%20Galectin-3%20Determined%20by%20MAS%20NMR%20and%20QM/MM:%20Details%20of%20Structure%20and%20Environment%20Matter&rft.jtitle=Chemphyschem&rft.au=Kraus,%20Jodi&rft.date=2020-07-02&rft.volume=21&rft.issue=13&rft.spage=1436&rft.epage=1443&rft.pages=1436-1443&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202000249&rft_dat=%3Cproquest_cross%3E2398160574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1407-72a499dc4709e774785b3085213127542dbce12a164daa48bfa9240e30ef00c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398160574&rft_id=info:pmid/32363727&rfr_iscdi=true