Loading…
A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches
Theoretical and experimental studies have revealed that that in the liver mitochondria an increase in the rate of free respiration in state 3 induced by protonophore uncouplers 2,4-dinitrophenol and сarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone is equal to or slightly greater than the increas...
Saved in:
Published in: | Cell biochemistry and biophysics 2020-06, Vol.78 (2), p.203-216 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Theoretical and experimental studies have revealed that that in the liver mitochondria an increase in the rate of free respiration in state 3 induced by protonophore uncouplers 2,4-dinitrophenol and сarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone is equal to or slightly greater than the increase in respiration rate in state 4 induced by these uncouplers. In contrast to these protonophore uncouplers, the decoupler α,ω-tetradecanedioic acid, increasing the rate of respiration in state 4, does not significantly affect the rate of free respiration in state 3. We have proposed quantitative indicators that allow determining the constituent part of the rate of respiration in state 4, associated with the decoupling effect of the uncoupler. Using the example of palmitic acid, we have found out the fundamental possibility of the simultaneous functioning of uncouplers by two mechanisms: as protonophores and as decouplers. The data obtained contradict the delocalized version of Mitchell’s chemiosmotic theory, but are in complete agreement with its local version. It can be assumed that the
F
0
F
1
-ATP synthase and nearby respiratory chain complexes form a local zone of coupled respiration and oxidative ATP synthesis (zones of oxidative phosphorylation). The uncoupler-induced stimulation of mitochondrial free respiration of mitochondria in state 3 is mainly due to the return of protons to the matrix in local zones, where the generation of a proton motive force (Δ
р
) by respiratory chain complexes is associated with various transport processes, but not with ATP synthesis (zones of protonophore uncoupling). In contrast, respiratory stimulation in state 4 by decouplers is realized in local zones of oxidative phosphorylation by switching the respiratory chain complexes to the idle mode of operation in the absence of ATP synthesis. |
---|---|
ISSN: | 1085-9195 1559-0283 |
DOI: | 10.1007/s12013-020-00914-5 |