Loading…
Topotactic Hydrogen in Nickelate Superconductors and Akin Infinite-Layer Oxides ABO_{2}
Superconducting nickelates appear to be difficult to synthesize. Since the chemical reduction of ABO_{3} [rare earth (A), transition metal (B)] with CaH_{2} may result in both ABO_{2} and ABO_{2}H, we calculate the topotactic H binding energy by density functional theory (DFT). We find intercalating...
Saved in:
Published in: | Physical review letters 2020-04, Vol.124 (16), p.166402-166402 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superconducting nickelates appear to be difficult to synthesize. Since the chemical reduction of ABO_{3} [rare earth (A), transition metal (B)] with CaH_{2} may result in both ABO_{2} and ABO_{2}H, we calculate the topotactic H binding energy by density functional theory (DFT). We find intercalating H to be energetically favorable for LaNiO_{2} but not for Sr-doped NdNiO_{2}. This has dramatic consequences for the electronic structure as determined by DFT+dynamical mean field theory: that of 3d^{9} LaNiO_{2} is similar to (doped) cuprates, 3d^{8} LaNiO_{2}H is a two-orbital Mott insulator. Topotactic H might hence explain why some nickelates are superconducting and others are not. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.124.166402 |