Loading…

Activatable NIR-II photoacoustic imaging and photochemical synergistic therapy of MRSA infections using miniature Au/Ag nanorods

Multidrug-resistant Staphylococcus aureus (MRSA) seriously endanger human health. The development of efficient methods to eliminate the infections and monitor the treatment process are of great significance. Near-infrared-II (NIR-II) photoacoustic (PA) imaging and photothermal therapy (PTT) are high...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2020-08, Vol.251, p.120092-120092, Article 120092
Main Authors: Mei, Zihan, Gao, Duyang, Hu, Dehong, Zhou, Huichao, Ma, Teng, Huang, Liang, Liu, Xin, Zheng, Rongqin, Zheng, Hairong, Zhao, Ping, Zhou, Jianqiao, Sheng, Zonghai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multidrug-resistant Staphylococcus aureus (MRSA) seriously endanger human health. The development of efficient methods to eliminate the infections and monitor the treatment process are of great significance. Near-infrared-II (NIR-II) photoacoustic (PA) imaging and photothermal therapy (PTT) are highly integrated theranostic platforms with superior performance including a low imaging background, increased tissue penetration depth, and high photothermal threshold. Herein, we report an activatable near-infrared II (NIR-II) phototheranostic strategy using miniature Au/Ag nanorods (NRs) for the photochemical synergistic therapy of MRSA infections and in situ monitoring of the treatment progress. Au/Ag NRs were efficiently activated by ferricyanide solution and allowed to continuously release free Ag+ to eliminate MRSA, triggering NIR-II photothermal and PA performance enhancement. The activated NIR-II photothermal effect in turn accelerated the release of free Ag+ from Au/Ag NRs for the synergistic elimination of gram-positive Staphylococcus aureus and promoted wound healing. No photothermal damages or free Ag+-induced side effects were observed in treated mice. After synergistic treatment, a 20-fold NIR-II PA signal increase with a maximum signal-to-noise measurement of 9.5 was observed between the implanted site and normal tissue, enabling sensitive monitoring of Ag+ release process. The prepared Au/Ag NRs were stable and biocompatible, showing great potential for activatable NIR-II phototheranostic application.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2020.120092