Loading…
Performance scaling of a 10-GHz solid-state laser enabling self-referenced CEO frequency detection without amplification
A simple and compact straight-cavity laser oscillator incorporating a cascaded quadratic nonlinear crystal and a semiconductor saturable absorber mirror (SESAM) can deliver stable femtosecond modelocking at high pulse repetition rates >10 GHz. In this paper, we experimentally investigate the infl...
Saved in:
Published in: | Optics express 2020-04, Vol.28 (9), p.12755-12770 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple and compact straight-cavity laser oscillator incorporating a cascaded quadratic nonlinear crystal and a semiconductor saturable absorber mirror (SESAM) can deliver stable femtosecond modelocking at high pulse repetition rates >10 GHz. In this paper, we experimentally investigate the influence of intracavity dispersion, pump brightness, and cavity design on modelocking with high repetition rates, and use the resulting insights to demonstrate a 10.4-GHz straight-cavity SESAM-modelocked Yb:CALGO laser delivering 108-fs pulses with 812 mW of average output power. This result represents a record-level performance for diode-pumped femtosecond oscillators with repetition rates above 10 GHz. Using the oscillator output without any optical amplification, we demonstrate coherent octave-spanning supercontinuum generation (SCG) in a silicon nitride waveguide. Subsequent f-to-2f interferometry with a periodically poled lithium niobate waveguide enables the detection of a strong carrier-envelope offset (CEO) beat note with a 33-dB signal-to-noise ratio. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.391252 |