Loading…
Surface plasmon coupled nano-probe for near field scanning optical microscopy
Near-field scanning optical microscopy (NSOM) is a powerful tool for study of the nanoscale information of objects by measuring their near-field electric field distributions. The near-field probe, which determines NSOM system performance, can be either a scattering-type or an aperture-type. Both typ...
Saved in:
Published in: | Optics express 2020-05, Vol.28 (10), p.14831-14838 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Near-field scanning optical microscopy (NSOM) is a powerful tool for study of the nanoscale information of objects by measuring their near-field electric field distributions. The near-field probe, which determines NSOM system performance, can be either a scattering-type or an aperture-type. Both types have strengths and weaknesses. Here we propose and study a surface plasmon-coupled type nano-probe, which works as a hybrid scheme and could potentially combine the advantages of the two NSOM probe types. The key element of the proposed probe is a nanoparticle-on-film structure designed on a tapered fiber tip. On the one hand, the probe can yield the signals scattered in the near field by a nanoparticle with a scattering mechanism; on the other hand, the scattered signals can be transmitted by the metal film and coupled into the fiber via surface plasmon coupled emission, thus providing a collection mode similar to an aperture-type NSOM. This will lead to signal enhancement, while greatly suppressing background noise. This surface plasmon-coupled nano-probe thus has great potential for near-field optical microscopy applications. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.389176 |